MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr Structured version   Visualization version   GIF version

Theorem discr 13208
Description: If a quadratic polynomial with real coefficients is nonnegative for all values, then its discriminant is nonpositive. (Contributed by NM, 10-Aug-1999.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
Assertion
Ref Expression
discr (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem discr
StepHypRef Expression
1 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
21adantr 472 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
3 resqcl 13138 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵↑2) ∈ ℝ)
42, 3syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝐵↑2) ∈ ℝ)
54recnd 10322 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐵↑2) ∈ ℂ)
6 4re 11357 . . . . . . . . 9 4 ∈ ℝ
7 discr.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
87adantr 472 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
109adantr 472 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐶 ∈ ℝ)
118, 10remulcld 10324 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · 𝐶) ∈ ℝ)
12 remulcl 10274 . . . . . . . . 9 ((4 ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ) → (4 · (𝐴 · 𝐶)) ∈ ℝ)
136, 11, 12sylancr 581 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (4 · (𝐴 · 𝐶)) ∈ ℝ)
1413recnd 10322 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
15 4pos 11386 . . . . . . . . . 10 0 < 4
166, 15elrpii 12031 . . . . . . . . 9 4 ∈ ℝ+
17 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
188, 17elrpd 12067 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
19 rpmulcl 12053 . . . . . . . . 9 ((4 ∈ ℝ+𝐴 ∈ ℝ+) → (4 · 𝐴) ∈ ℝ+)
2016, 18, 19sylancr 581 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) ∈ ℝ+)
2120rpcnd 12072 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) ∈ ℂ)
2220rpne0d 12075 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) ≠ 0)
235, 14, 21, 22divsubdird 11094 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) = (((𝐵↑2) / (4 · 𝐴)) − ((4 · (𝐴 · 𝐶)) / (4 · 𝐴))))
2411recnd 10322 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · 𝐶) ∈ ℂ)
258recnd 10322 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
26 4cn 11358 . . . . . . . . . 10 4 ∈ ℂ
2726a1i 11 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 4 ∈ ℂ)
2818rpne0d 12075 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
29 4ne0 11387 . . . . . . . . . 10 4 ≠ 0
3029a1i 11 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 4 ≠ 0)
3124, 25, 27, 28, 30divcan5d 11081 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((4 · (𝐴 · 𝐶)) / (4 · 𝐴)) = ((𝐴 · 𝐶) / 𝐴))
3210recnd 10322 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 𝐶 ∈ ℂ)
3332, 25, 28divcan3d 11060 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · 𝐶) / 𝐴) = 𝐶)
3431, 33eqtrd 2799 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((4 · (𝐴 · 𝐶)) / (4 · 𝐴)) = 𝐶)
3534oveq2d 6858 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) − ((4 · (𝐴 · 𝐶)) / (4 · 𝐴))) = (((𝐵↑2) / (4 · 𝐴)) − 𝐶))
3623, 35eqtrd 2799 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) = (((𝐵↑2) / (4 · 𝐴)) − 𝐶))
374, 20rerpdivcld 12101 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (4 · 𝐴)) ∈ ℝ)
3837recnd 10322 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (4 · 𝐴)) ∈ ℂ)
39382timesd 11521 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (2 · ((𝐵↑2) / (4 · 𝐴))) = (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))))
40 2t2e4 11442 . . . . . . . . . . . . 13 (2 · 2) = 4
4140oveq1i 6852 . . . . . . . . . . . 12 ((2 · 2) · 𝐴) = (4 · 𝐴)
42 2cnd 11350 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < 𝐴) → 2 ∈ ℂ)
4342, 42, 25mulassd 10317 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
4441, 43syl5eqr 2813 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (4 · 𝐴) = (2 · (2 · 𝐴)))
4544oveq2d 6858 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((2 · (𝐵↑2)) / (4 · 𝐴)) = ((2 · (𝐵↑2)) / (2 · (2 · 𝐴))))
4642, 5, 21, 22divassd 11090 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((2 · (𝐵↑2)) / (4 · 𝐴)) = (2 · ((𝐵↑2) / (4 · 𝐴))))
47 2rp 12033 . . . . . . . . . . . . 13 2 ∈ ℝ+
48 rpmulcl 12053 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
4947, 18, 48sylancr 581 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → (2 · 𝐴) ∈ ℝ+)
5049rpcnd 12072 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (2 · 𝐴) ∈ ℂ)
5149rpne0d 12075 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (2 · 𝐴) ≠ 0)
52 2ne0 11383 . . . . . . . . . . . 12 2 ≠ 0
5352a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 2 ≠ 0)
545, 50, 42, 51, 53divcan5d 11081 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((2 · (𝐵↑2)) / (2 · (2 · 𝐴))) = ((𝐵↑2) / (2 · 𝐴)))
5545, 46, 543eqtr3d 2807 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (2 · ((𝐵↑2) / (4 · 𝐴))) = ((𝐵↑2) / (2 · 𝐴)))
5639, 55eqtr3d 2801 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))) = ((𝐵↑2) / (2 · 𝐴)))
57 oveq1 6849 . . . . . . . . . . . . . . 15 (𝑥 = -(𝐵 / (2 · 𝐴)) → (𝑥↑2) = (-(𝐵 / (2 · 𝐴))↑2))
5857oveq2d 6858 . . . . . . . . . . . . . 14 (𝑥 = -(𝐵 / (2 · 𝐴)) → (𝐴 · (𝑥↑2)) = (𝐴 · (-(𝐵 / (2 · 𝐴))↑2)))
59 oveq2 6850 . . . . . . . . . . . . . 14 (𝑥 = -(𝐵 / (2 · 𝐴)) → (𝐵 · 𝑥) = (𝐵 · -(𝐵 / (2 · 𝐴))))
6058, 59oveq12d 6860 . . . . . . . . . . . . 13 (𝑥 = -(𝐵 / (2 · 𝐴)) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))))
6160oveq1d 6857 . . . . . . . . . . . 12 (𝑥 = -(𝐵 / (2 · 𝐴)) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶))
6261breq2d 4821 . . . . . . . . . . 11 (𝑥 = -(𝐵 / (2 · 𝐴)) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶)))
63 discr.4 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
6463ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
6564adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
662, 49rerpdivcld 12101 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → (𝐵 / (2 · 𝐴)) ∈ ℝ)
6766renegcld 10711 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → -(𝐵 / (2 · 𝐴)) ∈ ℝ)
6862, 65, 67rspcdva 3467 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶))
6966recnd 10322 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ 0 < 𝐴) → (𝐵 / (2 · 𝐴)) ∈ ℂ)
70 sqneg 13130 . . . . . . . . . . . . . . . . . . 19 ((𝐵 / (2 · 𝐴)) ∈ ℂ → (-(𝐵 / (2 · 𝐴))↑2) = ((𝐵 / (2 · 𝐴))↑2))
7169, 70syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → (-(𝐵 / (2 · 𝐴))↑2) = ((𝐵 / (2 · 𝐴))↑2))
722recnd 10322 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℂ)
73 sqdiv 13135 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ (2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0) → ((𝐵 / (2 · 𝐴))↑2) = ((𝐵↑2) / ((2 · 𝐴)↑2)))
7472, 50, 51, 73syl3anc 1490 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → ((𝐵 / (2 · 𝐴))↑2) = ((𝐵↑2) / ((2 · 𝐴)↑2)))
75 sqval 13129 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴)↑2) = ((2 · 𝐴) · (2 · 𝐴)))
7650, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴)↑2) = ((2 · 𝐴) · (2 · 𝐴)))
7750, 42, 25mulassd 10317 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ 0 < 𝐴) → (((2 · 𝐴) · 2) · 𝐴) = ((2 · 𝐴) · (2 · 𝐴)))
7842, 25, 42mul32d 10500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴) · 2) = ((2 · 2) · 𝐴))
7978, 41syl6eq 2815 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴) · 2) = (4 · 𝐴))
8079oveq1d 6857 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ 0 < 𝐴) → (((2 · 𝐴) · 2) · 𝐴) = ((4 · 𝐴) · 𝐴))
8176, 77, 803eqtr2d 2805 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ 0 < 𝐴) → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
8281oveq2d 6858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / ((2 · 𝐴)↑2)) = ((𝐵↑2) / ((4 · 𝐴) · 𝐴)))
8371, 74, 823eqtrd 2803 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → (-(𝐵 / (2 · 𝐴))↑2) = ((𝐵↑2) / ((4 · 𝐴) · 𝐴)))
845, 21, 25, 22, 28divdiv1d 11086 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) / 𝐴) = ((𝐵↑2) / ((4 · 𝐴) · 𝐴)))
8583, 84eqtr4d 2802 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < 𝐴) → (-(𝐵 / (2 · 𝐴))↑2) = (((𝐵↑2) / (4 · 𝐴)) / 𝐴))
8685oveq2d 6858 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) = (𝐴 · (((𝐵↑2) / (4 · 𝐴)) / 𝐴)))
8738, 25, 28divcan2d 11057 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (((𝐵↑2) / (4 · 𝐴)) / 𝐴)) = ((𝐵↑2) / (4 · 𝐴)))
8886, 87eqtrd 2799 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) = ((𝐵↑2) / (4 · 𝐴)))
8972, 69mulneg2d 10738 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → (𝐵 · -(𝐵 / (2 · 𝐴))) = -(𝐵 · (𝐵 / (2 · 𝐴))))
90 sqval 13129 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
9172, 90syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 0 < 𝐴) → (𝐵↑2) = (𝐵 · 𝐵))
9291oveq1d 6857 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) = ((𝐵 · 𝐵) / (2 · 𝐴)))
9372, 72, 50, 51divassd 11090 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 0 < 𝐴) → ((𝐵 · 𝐵) / (2 · 𝐴)) = (𝐵 · (𝐵 / (2 · 𝐴))))
9492, 93eqtrd 2799 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) = (𝐵 · (𝐵 / (2 · 𝐴))))
9594negeqd 10529 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → -((𝐵↑2) / (2 · 𝐴)) = -(𝐵 · (𝐵 / (2 · 𝐴))))
9689, 95eqtr4d 2802 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < 𝐴) → (𝐵 · -(𝐵 / (2 · 𝐴))) = -((𝐵↑2) / (2 · 𝐴)))
9788, 96oveq12d 6860 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) = (((𝐵↑2) / (4 · 𝐴)) + -((𝐵↑2) / (2 · 𝐴))))
984, 49rerpdivcld 12101 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) ∈ ℝ)
9998recnd 10322 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) ∈ ℂ)
10038, 99negsubd 10652 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + -((𝐵↑2) / (2 · 𝐴))) = (((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))))
10197, 100eqtrd 2799 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) = (((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))))
102101oveq1d 6857 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶) = ((((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))) + 𝐶))
10338, 32, 99addsubd 10667 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))) = ((((𝐵↑2) / (4 · 𝐴)) − ((𝐵↑2) / (2 · 𝐴))) + 𝐶))
104102, 103eqtr4d 2802 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → (((𝐴 · (-(𝐵 / (2 · 𝐴))↑2)) + (𝐵 · -(𝐵 / (2 · 𝐴)))) + 𝐶) = ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))))
10568, 104breqtrd 4835 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))))
10637, 10readdcld 10323 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + 𝐶) ∈ ℝ)
107106, 98subge0d 10871 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ ((((𝐵↑2) / (4 · 𝐴)) + 𝐶) − ((𝐵↑2) / (2 · 𝐴))) ↔ ((𝐵↑2) / (2 · 𝐴)) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶)))
108105, 107mpbid 223 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (2 · 𝐴)) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶))
10956, 108eqbrtrd 4831 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶))
11037, 10, 37leadd2d 10876 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) ≤ 𝐶 ↔ (((𝐵↑2) / (4 · 𝐴)) + ((𝐵↑2) / (4 · 𝐴))) ≤ (((𝐵↑2) / (4 · 𝐴)) + 𝐶)))
111109, 110mpbird 248 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) / (4 · 𝐴)) ≤ 𝐶)
11237, 10suble0d 10872 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((((𝐵↑2) / (4 · 𝐴)) − 𝐶) ≤ 0 ↔ ((𝐵↑2) / (4 · 𝐴)) ≤ 𝐶))
113111, 112mpbird 248 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) / (4 · 𝐴)) − 𝐶) ≤ 0)
11436, 113eqbrtrd 4831 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) ≤ 0)
1154, 13resubcld 10712 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
116 0red 10297 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
117115, 116, 20ledivmuld 12123 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((((𝐵↑2) − (4 · (𝐴 · 𝐶))) / (4 · 𝐴)) ≤ 0 ↔ ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ ((4 · 𝐴) · 0)))
118114, 117mpbid 223 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ ((4 · 𝐴) · 0))
11921mul01d 10489 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((4 · 𝐴) · 0) = 0)
120118, 119breqtrd 4835 . 2 ((𝜑 ∧ 0 < 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
1219adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐶 ∈ ℝ)
122121ltp1d 11208 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐶 < (𝐶 + 1))
123 peano2re 10463 . . . . . . . . . . . . 13 (𝐶 ∈ ℝ → (𝐶 + 1) ∈ ℝ)
124121, 123syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐶 + 1) ∈ ℝ)
125121, 124ltnegd 10859 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐶 < (𝐶 + 1) ↔ -(𝐶 + 1) < -𝐶))
126122, 125mpbid 223 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) < -𝐶)
127 df-neg 10523 . . . . . . . . . 10 -𝐶 = (0 − 𝐶)
128126, 127syl6breq 4850 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) < (0 − 𝐶))
129124renegcld 10711 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) ∈ ℝ)
130 0red 10297 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 ∈ ℝ)
131129, 121, 130ltaddsubd 10881 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((-(𝐶 + 1) + 𝐶) < 0 ↔ -(𝐶 + 1) < (0 − 𝐶)))
132128, 131mpbird 248 . . . . . . . 8 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) + 𝐶) < 0)
133132expr 448 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (𝐵 ≠ 0 → (-(𝐶 + 1) + 𝐶) < 0))
134 oveq1 6849 . . . . . . . . . . . . . . 15 (𝑥 = (-(𝐶 + 1) / 𝐵) → (𝑥↑2) = ((-(𝐶 + 1) / 𝐵)↑2))
135134oveq2d 6858 . . . . . . . . . . . . . 14 (𝑥 = (-(𝐶 + 1) / 𝐵) → (𝐴 · (𝑥↑2)) = (𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)))
136 oveq2 6850 . . . . . . . . . . . . . 14 (𝑥 = (-(𝐶 + 1) / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (-(𝐶 + 1) / 𝐵)))
137135, 136oveq12d 6860 . . . . . . . . . . . . 13 (𝑥 = (-(𝐶 + 1) / 𝐵) → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))))
138137oveq1d 6857 . . . . . . . . . . . 12 (𝑥 = (-(𝐶 + 1) / 𝐵) → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶))
139138breq2d 4821 . . . . . . . . . . 11 (𝑥 = (-(𝐶 + 1) / 𝐵) → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶)))
14064adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
1411adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
142 simprr 789 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐵 ≠ 0)
143129, 141, 142redivcld 11107 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) / 𝐵) ∈ ℝ)
144139, 140, 143rspcdva 3467 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 ≤ (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶))
145 simprl 787 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 = 𝐴)
146145oveq1d 6857 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 · ((-(𝐶 + 1) / 𝐵)↑2)) = (𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)))
147143recnd 10322 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) / 𝐵) ∈ ℂ)
148 sqcl 13132 . . . . . . . . . . . . . . . 16 ((-(𝐶 + 1) / 𝐵) ∈ ℂ → ((-(𝐶 + 1) / 𝐵)↑2) ∈ ℂ)
149147, 148syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((-(𝐶 + 1) / 𝐵)↑2) ∈ ℂ)
150149mul02d 10488 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 · ((-(𝐶 + 1) / 𝐵)↑2)) = 0)
151146, 150eqtr3d 2801 . . . . . . . . . . . . 13 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) = 0)
152129recnd 10322 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → -(𝐶 + 1) ∈ ℂ)
153141recnd 10322 . . . . . . . . . . . . . 14 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
154152, 153, 142divcan2d 11057 . . . . . . . . . . . . 13 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (𝐵 · (-(𝐶 + 1) / 𝐵)) = -(𝐶 + 1))
155151, 154oveq12d 6860 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) = (0 + -(𝐶 + 1)))
156152addid2d 10491 . . . . . . . . . . . 12 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 + -(𝐶 + 1)) = -(𝐶 + 1))
157155, 156eqtrd 2799 . . . . . . . . . . 11 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) = -(𝐶 + 1))
158157oveq1d 6857 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (((𝐴 · ((-(𝐶 + 1) / 𝐵)↑2)) + (𝐵 · (-(𝐶 + 1) / 𝐵))) + 𝐶) = (-(𝐶 + 1) + 𝐶))
159144, 158breqtrd 4835 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → 0 ≤ (-(𝐶 + 1) + 𝐶))
160 0re 10295 . . . . . . . . . 10 0 ∈ ℝ
161129, 121readdcld 10323 . . . . . . . . . 10 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (-(𝐶 + 1) + 𝐶) ∈ ℝ)
162 lenlt 10370 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (-(𝐶 + 1) + 𝐶) ∈ ℝ) → (0 ≤ (-(𝐶 + 1) + 𝐶) ↔ ¬ (-(𝐶 + 1) + 𝐶) < 0))
163160, 161, 162sylancr 581 . . . . . . . . 9 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → (0 ≤ (-(𝐶 + 1) + 𝐶) ↔ ¬ (-(𝐶 + 1) + 𝐶) < 0))
164159, 163mpbid 223 . . . . . . . 8 ((𝜑 ∧ (0 = 𝐴𝐵 ≠ 0)) → ¬ (-(𝐶 + 1) + 𝐶) < 0)
165164expr 448 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (𝐵 ≠ 0 → ¬ (-(𝐶 + 1) + 𝐶) < 0))
166133, 165pm2.65d 187 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ¬ 𝐵 ≠ 0)
167 nne 2941 . . . . . 6 𝐵 ≠ 0 ↔ 𝐵 = 0)
168166, 167sylib 209 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → 𝐵 = 0)
169168sq0id 13164 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (𝐵↑2) = 0)
170 simpr 477 . . . . . . . 8 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
171170oveq1d 6857 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (0 · 𝐶) = (𝐴 · 𝐶))
1729recnd 10322 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
173172adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 = 𝐴) → 𝐶 ∈ ℂ)
174173mul02d 10488 . . . . . . 7 ((𝜑 ∧ 0 = 𝐴) → (0 · 𝐶) = 0)
175171, 174eqtr3d 2801 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → (𝐴 · 𝐶) = 0)
176175oveq2d 6858 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (4 · (𝐴 · 𝐶)) = (4 · 0))
17726mul01i 10480 . . . . 5 (4 · 0) = 0
178176, 177syl6eq 2815 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (4 · (𝐴 · 𝐶)) = 0)
179169, 178oveq12d 6860 . . 3 ((𝜑 ∧ 0 = 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) = (0 − 0))
180 0m0e0 11399 . . . 4 (0 − 0) = 0
181 0le0 11380 . . . 4 0 ≤ 0
182180, 181eqbrtri 4830 . . 3 (0 − 0) ≤ 0
183179, 182syl6eqbr 4848 . 2 ((𝜑 ∧ 0 = 𝐴) → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
184 eqid 2765 . . . 4 if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
1857, 1, 9, 63, 184discr1 13207 . . 3 (𝜑 → 0 ≤ 𝐴)
186 leloe 10378 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
187160, 7, 186sylancr 581 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
188185, 187mpbid 223 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
189120, 183, 188mpjaodan 981 1 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ≤ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wral 3055  ifcif 4243   class class class wbr 4809  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  2c2 11327  4c4 11329  +crp 12028  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068
This theorem is referenced by:  csbren  23471  normlem6  28428
  Copyright terms: Public domain W3C validator