Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooelexlt Structured version   Visualization version   GIF version

Theorem iooelexlt 37345
Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.)
Assertion
Ref Expression
iooelexlt (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋

Proof of Theorem iooelexlt
StepHypRef Expression
1 eliooxr 13442 . . 3 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21simpld 494 . 2 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
3 elxr 13156 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4 19.3v 1979 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ))
5 ovex 7464 . . . . . . 7 ((𝐴 + 𝑋) / 2) ∈ V
6 nfcv 2903 . . . . . . . 8 𝑦((𝐴 + 𝑋) / 2)
7 nfre1 3283 . . . . . . . 8 𝑦𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋
8 elioore 13414 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ)
9 readdcl 11236 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 + 𝑋) ∈ ℝ)
109rehalfcld 12511 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
118, 10sylan2 593 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1211ancoms 458 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1312rexrd 11309 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ*)
14 eliooord 13443 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑋𝑋 < 𝐵))
1514simpld 494 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑋)
1615adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝑋)
17 avglt1 12502 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
188, 17sylan2 593 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
1918ancoms 458 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
2016, 19mpbid 232 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < ((𝐴 + 𝑋) / 2))
218rexrd 11309 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ*)
2221adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 ∈ ℝ*)
231simprd 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
25 avglt2 12503 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
268, 25sylan2 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2726ancoms 458 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2816, 27mpbid 232 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝑋)
2914simprd 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 < 𝐵)
3029adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 < 𝐵)
3113, 22, 24, 28, 30xrlttrd 13198 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝐵)
32 elioo1 13424 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
331, 32syl 17 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐴(,)𝐵) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3433adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3513, 20, 31, 34mpbir3and 1341 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵))
3635, 28jca 511 . . . . . . . . . 10 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋))
37 eleq1 2827 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵)))
38 breq1 5151 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
3937, 38anbi12d 632 . . . . . . . . . 10 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋)))
4036, 39imbitrrid 246 . . . . . . . . 9 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋)))
41 rspe 3247 . . . . . . . . 9 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4240, 41syl6 35 . . . . . . . 8 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
436, 7, 42spcimgf 3550 . . . . . . 7 (((𝐴 + 𝑋) / 2) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
445, 43ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
454, 44sylbir 235 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4645expcom 413 . . . 4 (𝐴 ∈ ℝ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
47 simpl 482 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → 𝑋 ∈ (𝐴(,)𝐵))
48 oveq1 7438 . . . . . . . . 9 (𝐴 = +∞ → (𝐴(,)𝐵) = (+∞(,)𝐵))
4948eleq2d 2825 . . . . . . . 8 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
5049adantl 481 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
51 pnfxr 11313 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
52 elioo2 13425 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5351, 52mpan 690 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5453biimpd 229 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
55 elioore 13414 . . . . . . . . . . . . 13 (𝑋 ∈ (+∞(,)𝐵) → 𝑋 ∈ ℝ)
56 rexr 11305 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ*)
57 pnfnlt 13168 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ* → ¬ +∞ < 𝑋)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → ¬ +∞ < 𝑋)
5958intn3an2d 1479 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6055, 59syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6160a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
6254, 61pm2.65d 196 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ 𝑋 ∈ (+∞(,)𝐵))
6323, 62syl 17 . . . . . . . . 9 (𝑋 ∈ (𝐴(,)𝐵) → ¬ 𝑋 ∈ (+∞(,)𝐵))
6463pm2.21d 121 . . . . . . . 8 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6564adantr 480 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6650, 65sylbid 240 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6747, 66mpd 15 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
6867expcom 413 . . . 4 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
69 19.3v 1979 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞))
70 ovex 7464 . . . . . . 7 (𝑋 − 1) ∈ V
71 nfcv 2903 . . . . . . . 8 𝑦(𝑋 − 1)
72 peano2rem 11574 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ → (𝑋 − 1) ∈ ℝ)
738, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ)
74 mnflt 13163 . . . . . . . . . . . . . . . . 17 ((𝑋 − 1) ∈ ℝ → -∞ < (𝑋 − 1))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → -∞ < (𝑋 − 1))
7673rexrd 11309 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ*)
778ltm1d 12198 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝑋)
7876, 21, 23, 77, 29xrlttrd 13198 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝐵)
79 mnfxr 11316 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
80 elioo2 13425 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8179, 80mpan 690 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8223, 81syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8373, 75, 78, 82mpbir3and 1341 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ (-∞(,)𝐵))
8483adantr 480 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (-∞(,)𝐵))
85 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → (𝐴(,)𝐵) = (-∞(,)𝐵))
8685eleq2d 2825 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8884, 87mpbird 257 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (𝐴(,)𝐵))
8977adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) < 𝑋)
9088, 89jca 511 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
9190adantr 480 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
92 eleq1 2827 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (𝐴(,)𝐵)))
93 breq1 5151 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 < 𝑋 ↔ (𝑋 − 1) < 𝑋))
9492, 93anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑋 − 1) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9594adantl 481 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9691, 95mpbird 257 . . . . . . . . . 10 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋))
9796, 41syl 17 . . . . . . . . 9 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
9897expcom 413 . . . . . . . 8 (𝑦 = (𝑋 − 1) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
9971, 7, 98spcimgf 3550 . . . . . . 7 ((𝑋 − 1) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10070, 99ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
10169, 100sylbir 235 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
102101expcom 413 . . . 4 (𝐴 = -∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10346, 68, 1023jaoi 1427 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1043, 103sylbi 217 . 2 (𝐴 ∈ ℝ* → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1052, 104mpcom 38 1 (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478   class class class wbr 5148  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cmin 11490   / cdiv 11918  2c2 12319  (,)cioo 13384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-ioo 13388
This theorem is referenced by:  relowlpssretop  37347
  Copyright terms: Public domain W3C validator