Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooelexlt Structured version   Visualization version   GIF version

Theorem iooelexlt 34525
Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.)
Assertion
Ref Expression
iooelexlt (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋

Proof of Theorem iooelexlt
StepHypRef Expression
1 eliooxr 12783 . . 3 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21simpld 495 . 2 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
3 elxr 12499 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4 19.3v 1977 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ))
5 ovex 7178 . . . . . . 7 ((𝐴 + 𝑋) / 2) ∈ V
6 nfcv 2974 . . . . . . . 8 𝑦((𝐴 + 𝑋) / 2)
7 nfre1 3303 . . . . . . . 8 𝑦𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋
8 elioore 12756 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ)
9 readdcl 10608 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 + 𝑋) ∈ ℝ)
109rehalfcld 11872 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
118, 10sylan2 592 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1211ancoms 459 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1312rexrd 10679 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ*)
14 eliooord 12784 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑋𝑋 < 𝐵))
1514simpld 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑋)
1615adantr 481 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝑋)
17 avglt1 11863 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
188, 17sylan2 592 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
1918ancoms 459 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
2016, 19mpbid 233 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < ((𝐴 + 𝑋) / 2))
218rexrd 10679 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ*)
2221adantr 481 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 ∈ ℝ*)
231simprd 496 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
2423adantr 481 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
25 avglt2 11864 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
268, 25sylan2 592 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2726ancoms 459 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2816, 27mpbid 233 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝑋)
2914simprd 496 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 < 𝐵)
3029adantr 481 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 < 𝐵)
3113, 22, 24, 28, 30xrlttrd 12540 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝐵)
32 elioo1 12766 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
331, 32syl 17 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐴(,)𝐵) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3433adantr 481 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3513, 20, 31, 34mpbir3and 1334 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵))
3635, 28jca 512 . . . . . . . . . 10 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋))
37 eleq1 2897 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵)))
38 breq1 5060 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
3937, 38anbi12d 630 . . . . . . . . . 10 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋)))
4036, 39syl5ibr 247 . . . . . . . . 9 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋)))
41 rspe 3301 . . . . . . . . 9 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4240, 41syl6 35 . . . . . . . 8 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
436, 7, 42spcimgf 3585 . . . . . . 7 (((𝐴 + 𝑋) / 2) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
445, 43ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
454, 44sylbir 236 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4645expcom 414 . . . 4 (𝐴 ∈ ℝ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
47 simpl 483 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → 𝑋 ∈ (𝐴(,)𝐵))
48 oveq1 7152 . . . . . . . . 9 (𝐴 = +∞ → (𝐴(,)𝐵) = (+∞(,)𝐵))
4948eleq2d 2895 . . . . . . . 8 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
5049adantl 482 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
51 pnfxr 10683 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
52 elioo2 12767 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5351, 52mpan 686 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5453biimpd 230 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
55 elioore 12756 . . . . . . . . . . . . 13 (𝑋 ∈ (+∞(,)𝐵) → 𝑋 ∈ ℝ)
56 rexr 10675 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ*)
57 pnfnlt 12511 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ* → ¬ +∞ < 𝑋)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → ¬ +∞ < 𝑋)
5958intn3an2d 1471 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6055, 59syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6160a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
6254, 61pm2.65d 197 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ 𝑋 ∈ (+∞(,)𝐵))
6323, 62syl 17 . . . . . . . . 9 (𝑋 ∈ (𝐴(,)𝐵) → ¬ 𝑋 ∈ (+∞(,)𝐵))
6463pm2.21d 121 . . . . . . . 8 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6564adantr 481 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6650, 65sylbid 241 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6747, 66mpd 15 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
6867expcom 414 . . . 4 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
69 19.3v 1977 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞))
70 ovex 7178 . . . . . . 7 (𝑋 − 1) ∈ V
71 nfcv 2974 . . . . . . . 8 𝑦(𝑋 − 1)
72 peano2rem 10941 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ → (𝑋 − 1) ∈ ℝ)
738, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ)
74 mnflt 12506 . . . . . . . . . . . . . . . . 17 ((𝑋 − 1) ∈ ℝ → -∞ < (𝑋 − 1))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → -∞ < (𝑋 − 1))
7673rexrd 10679 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ*)
778ltm1d 11560 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝑋)
7876, 21, 23, 77, 29xrlttrd 12540 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝐵)
79 mnfxr 10686 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
80 elioo2 12767 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8179, 80mpan 686 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8223, 81syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8373, 75, 78, 82mpbir3and 1334 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ (-∞(,)𝐵))
8483adantr 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (-∞(,)𝐵))
85 oveq1 7152 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → (𝐴(,)𝐵) = (-∞(,)𝐵))
8685eleq2d 2895 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8786adantl 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8884, 87mpbird 258 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (𝐴(,)𝐵))
8977adantr 481 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) < 𝑋)
9088, 89jca 512 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
9190adantr 481 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
92 eleq1 2897 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (𝐴(,)𝐵)))
93 breq1 5060 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 < 𝑋 ↔ (𝑋 − 1) < 𝑋))
9492, 93anbi12d 630 . . . . . . . . . . . 12 (𝑦 = (𝑋 − 1) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9594adantl 482 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9691, 95mpbird 258 . . . . . . . . . 10 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋))
9796, 41syl 17 . . . . . . . . 9 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
9897expcom 414 . . . . . . . 8 (𝑦 = (𝑋 − 1) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
9971, 7, 98spcimgf 3585 . . . . . . 7 ((𝑋 − 1) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10070, 99ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
10169, 100sylbir 236 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
102101expcom 414 . . . 4 (𝐴 = -∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10346, 68, 1023jaoi 1419 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1043, 103sylbi 218 . 2 (𝐴 ∈ ℝ* → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1052, 104mpcom 38 1 (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3o 1078  w3a 1079  wal 1526   = wceq 1528  wcel 2105  wrex 3136  Vcvv 3492   class class class wbr 5057  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662   < clt 10663  cmin 10858   / cdiv 11285  2c2 11680  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-ioo 12730
This theorem is referenced by:  relowlpssretop  34527
  Copyright terms: Public domain W3C validator