Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooelexlt Structured version   Visualization version   GIF version

Theorem iooelexlt 36243
Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.)
Assertion
Ref Expression
iooelexlt (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋

Proof of Theorem iooelexlt
StepHypRef Expression
1 eliooxr 13382 . . 3 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21simpld 496 . 2 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
3 elxr 13096 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4 19.3v 1986 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ))
5 ovex 7442 . . . . . . 7 ((𝐴 + 𝑋) / 2) ∈ V
6 nfcv 2904 . . . . . . . 8 𝑦((𝐴 + 𝑋) / 2)
7 nfre1 3283 . . . . . . . 8 𝑦𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋
8 elioore 13354 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ)
9 readdcl 11193 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 + 𝑋) ∈ ℝ)
109rehalfcld 12459 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
118, 10sylan2 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1211ancoms 460 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1312rexrd 11264 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ*)
14 eliooord 13383 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑋𝑋 < 𝐵))
1514simpld 496 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑋)
1615adantr 482 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝑋)
17 avglt1 12450 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
188, 17sylan2 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
1918ancoms 460 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
2016, 19mpbid 231 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < ((𝐴 + 𝑋) / 2))
218rexrd 11264 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ*)
2221adantr 482 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 ∈ ℝ*)
231simprd 497 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
2423adantr 482 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
25 avglt2 12451 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
268, 25sylan2 594 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2726ancoms 460 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2816, 27mpbid 231 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝑋)
2914simprd 497 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 < 𝐵)
3029adantr 482 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 < 𝐵)
3113, 22, 24, 28, 30xrlttrd 13138 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝐵)
32 elioo1 13364 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
331, 32syl 17 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐴(,)𝐵) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3433adantr 482 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3513, 20, 31, 34mpbir3and 1343 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵))
3635, 28jca 513 . . . . . . . . . 10 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋))
37 eleq1 2822 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵)))
38 breq1 5152 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
3937, 38anbi12d 632 . . . . . . . . . 10 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋)))
4036, 39imbitrrid 245 . . . . . . . . 9 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋)))
41 rspe 3247 . . . . . . . . 9 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4240, 41syl6 35 . . . . . . . 8 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
436, 7, 42spcimgf 3580 . . . . . . 7 (((𝐴 + 𝑋) / 2) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
445, 43ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
454, 44sylbir 234 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4645expcom 415 . . . 4 (𝐴 ∈ ℝ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
47 simpl 484 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → 𝑋 ∈ (𝐴(,)𝐵))
48 oveq1 7416 . . . . . . . . 9 (𝐴 = +∞ → (𝐴(,)𝐵) = (+∞(,)𝐵))
4948eleq2d 2820 . . . . . . . 8 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
5049adantl 483 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
51 pnfxr 11268 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
52 elioo2 13365 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5351, 52mpan 689 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5453biimpd 228 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
55 elioore 13354 . . . . . . . . . . . . 13 (𝑋 ∈ (+∞(,)𝐵) → 𝑋 ∈ ℝ)
56 rexr 11260 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ*)
57 pnfnlt 13108 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ* → ¬ +∞ < 𝑋)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → ¬ +∞ < 𝑋)
5958intn3an2d 1481 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6055, 59syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6160a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
6254, 61pm2.65d 195 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ 𝑋 ∈ (+∞(,)𝐵))
6323, 62syl 17 . . . . . . . . 9 (𝑋 ∈ (𝐴(,)𝐵) → ¬ 𝑋 ∈ (+∞(,)𝐵))
6463pm2.21d 121 . . . . . . . 8 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6564adantr 482 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6650, 65sylbid 239 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6747, 66mpd 15 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
6867expcom 415 . . . 4 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
69 19.3v 1986 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞))
70 ovex 7442 . . . . . . 7 (𝑋 − 1) ∈ V
71 nfcv 2904 . . . . . . . 8 𝑦(𝑋 − 1)
72 peano2rem 11527 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ → (𝑋 − 1) ∈ ℝ)
738, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ)
74 mnflt 13103 . . . . . . . . . . . . . . . . 17 ((𝑋 − 1) ∈ ℝ → -∞ < (𝑋 − 1))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → -∞ < (𝑋 − 1))
7673rexrd 11264 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ*)
778ltm1d 12146 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝑋)
7876, 21, 23, 77, 29xrlttrd 13138 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝐵)
79 mnfxr 11271 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
80 elioo2 13365 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8179, 80mpan 689 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8223, 81syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8373, 75, 78, 82mpbir3and 1343 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ (-∞(,)𝐵))
8483adantr 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (-∞(,)𝐵))
85 oveq1 7416 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → (𝐴(,)𝐵) = (-∞(,)𝐵))
8685eleq2d 2820 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8786adantl 483 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8884, 87mpbird 257 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (𝐴(,)𝐵))
8977adantr 482 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) < 𝑋)
9088, 89jca 513 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
9190adantr 482 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
92 eleq1 2822 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (𝐴(,)𝐵)))
93 breq1 5152 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 < 𝑋 ↔ (𝑋 − 1) < 𝑋))
9492, 93anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑋 − 1) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9594adantl 483 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9691, 95mpbird 257 . . . . . . . . . 10 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋))
9796, 41syl 17 . . . . . . . . 9 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
9897expcom 415 . . . . . . . 8 (𝑦 = (𝑋 − 1) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
9971, 7, 98spcimgf 3580 . . . . . . 7 ((𝑋 − 1) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10070, 99ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
10169, 100sylbir 234 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
102101expcom 415 . . . 4 (𝐴 = -∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10346, 68, 1023jaoi 1428 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1043, 103sylbi 216 . 2 (𝐴 ∈ ℝ* → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1052, 104mpcom 38 1 (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wrex 3071  Vcvv 3475   class class class wbr 5149  (class class class)co 7409  cr 11109  1c1 11111   + caddc 11113  +∞cpnf 11245  -∞cmnf 11246  *cxr 11247   < clt 11248  cmin 11444   / cdiv 11871  2c2 12267  (,)cioo 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-2 12275  df-ioo 13328
This theorem is referenced by:  relowlpssretop  36245
  Copyright terms: Public domain W3C validator