Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooelexlt Structured version   Visualization version   GIF version

Theorem iooelexlt 37404
Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.)
Assertion
Ref Expression
iooelexlt (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋

Proof of Theorem iooelexlt
StepHypRef Expression
1 eliooxr 13304 . . 3 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21simpld 494 . 2 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
3 elxr 13015 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4 19.3v 1983 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ))
5 ovex 7379 . . . . . . 7 ((𝐴 + 𝑋) / 2) ∈ V
6 nfcv 2894 . . . . . . . 8 𝑦((𝐴 + 𝑋) / 2)
7 nfre1 3257 . . . . . . . 8 𝑦𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋
8 elioore 13275 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ)
9 readdcl 11089 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 + 𝑋) ∈ ℝ)
109rehalfcld 12368 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
118, 10sylan2 593 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1211ancoms 458 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1312rexrd 11162 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ*)
14 eliooord 13305 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑋𝑋 < 𝐵))
1514simpld 494 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑋)
1615adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝑋)
17 avglt1 12359 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
188, 17sylan2 593 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
1918ancoms 458 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
2016, 19mpbid 232 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < ((𝐴 + 𝑋) / 2))
218rexrd 11162 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ*)
2221adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 ∈ ℝ*)
231simprd 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
25 avglt2 12360 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
268, 25sylan2 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2726ancoms 458 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2816, 27mpbid 232 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝑋)
2914simprd 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 < 𝐵)
3029adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 < 𝐵)
3113, 22, 24, 28, 30xrlttrd 13058 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝐵)
32 elioo1 13285 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
331, 32syl 17 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐴(,)𝐵) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3433adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3513, 20, 31, 34mpbir3and 1343 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵))
3635, 28jca 511 . . . . . . . . . 10 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋))
37 eleq1 2819 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵)))
38 breq1 5092 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
3937, 38anbi12d 632 . . . . . . . . . 10 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋)))
4036, 39imbitrrid 246 . . . . . . . . 9 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋)))
41 rspe 3222 . . . . . . . . 9 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4240, 41syl6 35 . . . . . . . 8 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
436, 7, 42spcimgf 3503 . . . . . . 7 (((𝐴 + 𝑋) / 2) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
445, 43ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
454, 44sylbir 235 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4645expcom 413 . . . 4 (𝐴 ∈ ℝ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
47 simpl 482 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → 𝑋 ∈ (𝐴(,)𝐵))
48 oveq1 7353 . . . . . . . . 9 (𝐴 = +∞ → (𝐴(,)𝐵) = (+∞(,)𝐵))
4948eleq2d 2817 . . . . . . . 8 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
5049adantl 481 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
51 pnfxr 11166 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
52 elioo2 13286 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5351, 52mpan 690 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5453biimpd 229 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
55 elioore 13275 . . . . . . . . . . . . 13 (𝑋 ∈ (+∞(,)𝐵) → 𝑋 ∈ ℝ)
56 rexr 11158 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ*)
57 pnfnlt 13027 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ* → ¬ +∞ < 𝑋)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → ¬ +∞ < 𝑋)
5958intn3an2d 1482 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6055, 59syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6160a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
6254, 61pm2.65d 196 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ 𝑋 ∈ (+∞(,)𝐵))
6323, 62syl 17 . . . . . . . . 9 (𝑋 ∈ (𝐴(,)𝐵) → ¬ 𝑋 ∈ (+∞(,)𝐵))
6463pm2.21d 121 . . . . . . . 8 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6564adantr 480 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6650, 65sylbid 240 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6747, 66mpd 15 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
6867expcom 413 . . . 4 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
69 19.3v 1983 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞))
70 ovex 7379 . . . . . . 7 (𝑋 − 1) ∈ V
71 nfcv 2894 . . . . . . . 8 𝑦(𝑋 − 1)
72 peano2rem 11428 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ → (𝑋 − 1) ∈ ℝ)
738, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ)
74 mnflt 13022 . . . . . . . . . . . . . . . . 17 ((𝑋 − 1) ∈ ℝ → -∞ < (𝑋 − 1))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → -∞ < (𝑋 − 1))
7673rexrd 11162 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ*)
778ltm1d 12054 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝑋)
7876, 21, 23, 77, 29xrlttrd 13058 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝐵)
79 mnfxr 11169 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
80 elioo2 13286 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8179, 80mpan 690 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8223, 81syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8373, 75, 78, 82mpbir3and 1343 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ (-∞(,)𝐵))
8483adantr 480 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (-∞(,)𝐵))
85 oveq1 7353 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → (𝐴(,)𝐵) = (-∞(,)𝐵))
8685eleq2d 2817 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8884, 87mpbird 257 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (𝐴(,)𝐵))
8977adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) < 𝑋)
9088, 89jca 511 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
9190adantr 480 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
92 eleq1 2819 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (𝐴(,)𝐵)))
93 breq1 5092 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 < 𝑋 ↔ (𝑋 − 1) < 𝑋))
9492, 93anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑋 − 1) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9594adantl 481 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9691, 95mpbird 257 . . . . . . . . . 10 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋))
9796, 41syl 17 . . . . . . . . 9 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
9897expcom 413 . . . . . . . 8 (𝑦 = (𝑋 − 1) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
9971, 7, 98spcimgf 3503 . . . . . . 7 ((𝑋 − 1) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10070, 99ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
10169, 100sylbir 235 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
102101expcom 413 . . . 4 (𝐴 = -∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10346, 68, 1023jaoi 1430 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1043, 103sylbi 217 . 2 (𝐴 ∈ ℝ* → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1052, 104mpcom 38 1 (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436   class class class wbr 5089  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cmin 11344   / cdiv 11774  2c2 12180  (,)cioo 13245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-ioo 13249
This theorem is referenced by:  relowlpssretop  37406
  Copyright terms: Public domain W3C validator