Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooelexlt Structured version   Visualization version   GIF version

Theorem iooelexlt 35460
Description: An element of an open interval is not its smallest element. (Contributed by ML, 2-Aug-2020.)
Assertion
Ref Expression
iooelexlt (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑋

Proof of Theorem iooelexlt
StepHypRef Expression
1 eliooxr 13066 . . 3 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21simpld 494 . 2 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
3 elxr 12781 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4 19.3v 1986 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ))
5 ovex 7288 . . . . . . 7 ((𝐴 + 𝑋) / 2) ∈ V
6 nfcv 2906 . . . . . . . 8 𝑦((𝐴 + 𝑋) / 2)
7 nfre1 3234 . . . . . . . 8 𝑦𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋
8 elioore 13038 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ)
9 readdcl 10885 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 + 𝑋) ∈ ℝ)
109rehalfcld 12150 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
118, 10sylan2 592 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1211ancoms 458 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ)
1312rexrd 10956 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ ℝ*)
14 eliooord 13067 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑋𝑋 < 𝐵))
1514simpld 494 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑋)
1615adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < 𝑋)
17 avglt1 12141 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
188, 17sylan2 592 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
1918ancoms 458 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋𝐴 < ((𝐴 + 𝑋) / 2)))
2016, 19mpbid 231 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐴 < ((𝐴 + 𝑋) / 2))
218rexrd 10956 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 ∈ ℝ*)
2221adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 ∈ ℝ*)
231simprd 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝐵 ∈ ℝ*)
2423adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ*)
25 avglt2 12142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
268, 25sylan2 592 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2726ancoms 458 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
2816, 27mpbid 231 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝑋)
2914simprd 495 . . . . . . . . . . . . . 14 (𝑋 ∈ (𝐴(,)𝐵) → 𝑋 < 𝐵)
3029adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → 𝑋 < 𝐵)
3113, 22, 24, 28, 30xrlttrd 12822 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) < 𝐵)
32 elioo1 13048 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
331, 32syl 17 . . . . . . . . . . . . 13 (𝑋 ∈ (𝐴(,)𝐵) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3433adantr 480 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ↔ (((𝐴 + 𝑋) / 2) ∈ ℝ*𝐴 < ((𝐴 + 𝑋) / 2) ∧ ((𝐴 + 𝑋) / 2) < 𝐵)))
3513, 20, 31, 34mpbir3and 1340 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵))
3635, 28jca 511 . . . . . . . . . 10 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋))
37 eleq1 2826 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 ∈ (𝐴(,)𝐵) ↔ ((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵)))
38 breq1 5073 . . . . . . . . . . 11 (𝑦 = ((𝐴 + 𝑋) / 2) → (𝑦 < 𝑋 ↔ ((𝐴 + 𝑋) / 2) < 𝑋))
3937, 38anbi12d 630 . . . . . . . . . 10 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ (((𝐴 + 𝑋) / 2) ∈ (𝐴(,)𝐵) ∧ ((𝐴 + 𝑋) / 2) < 𝑋)))
4036, 39syl5ibr 245 . . . . . . . . 9 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋)))
41 rspe 3232 . . . . . . . . 9 ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4240, 41syl6 35 . . . . . . . 8 (𝑦 = ((𝐴 + 𝑋) / 2) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
436, 7, 42spcimgf 3518 . . . . . . 7 (((𝐴 + 𝑋) / 2) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
445, 43ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
454, 44sylbir 234 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 ∈ ℝ) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
4645expcom 413 . . . 4 (𝐴 ∈ ℝ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
47 simpl 482 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → 𝑋 ∈ (𝐴(,)𝐵))
48 oveq1 7262 . . . . . . . . 9 (𝐴 = +∞ → (𝐴(,)𝐵) = (+∞(,)𝐵))
4948eleq2d 2824 . . . . . . . 8 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
5049adantl 481 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) ↔ 𝑋 ∈ (+∞(,)𝐵)))
51 pnfxr 10960 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
52 elioo2 13049 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5351, 52mpan 686 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) ↔ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
5453biimpd 228 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
55 elioore 13038 . . . . . . . . . . . . 13 (𝑋 ∈ (+∞(,)𝐵) → 𝑋 ∈ ℝ)
56 rexr 10952 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ*)
57 pnfnlt 12793 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℝ* → ¬ +∞ < 𝑋)
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → ¬ +∞ < 𝑋)
5958intn3an2d 1478 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6055, 59syl 17 . . . . . . . . . . . 12 (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵))
6160a1i 11 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝑋 ∈ (+∞(,)𝐵) → ¬ (𝑋 ∈ ℝ ∧ +∞ < 𝑋𝑋 < 𝐵)))
6254, 61pm2.65d 195 . . . . . . . . . 10 (𝐵 ∈ ℝ* → ¬ 𝑋 ∈ (+∞(,)𝐵))
6323, 62syl 17 . . . . . . . . 9 (𝑋 ∈ (𝐴(,)𝐵) → ¬ 𝑋 ∈ (+∞(,)𝐵))
6463pm2.21d 121 . . . . . . . 8 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6564adantr 480 . . . . . . 7 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (+∞(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6650, 65sylbid 239 . . . . . 6 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
6747, 66mpd 15 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = +∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
6867expcom 413 . . . 4 (𝐴 = +∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
69 19.3v 1986 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ↔ (𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞))
70 ovex 7288 . . . . . . 7 (𝑋 − 1) ∈ V
71 nfcv 2906 . . . . . . . 8 𝑦(𝑋 − 1)
72 peano2rem 11218 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ → (𝑋 − 1) ∈ ℝ)
738, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ)
74 mnflt 12788 . . . . . . . . . . . . . . . . 17 ((𝑋 − 1) ∈ ℝ → -∞ < (𝑋 − 1))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → -∞ < (𝑋 − 1))
7673rexrd 10956 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ ℝ*)
778ltm1d 11837 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝑋)
7876, 21, 23, 77, 29xrlttrd 12822 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) < 𝐵)
79 mnfxr 10963 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
80 elioo2 13049 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8179, 80mpan 686 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℝ* → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8223, 81syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴(,)𝐵) → ((𝑋 − 1) ∈ (-∞(,)𝐵) ↔ ((𝑋 − 1) ∈ ℝ ∧ -∞ < (𝑋 − 1) ∧ (𝑋 − 1) < 𝐵)))
8373, 75, 78, 82mpbir3and 1340 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴(,)𝐵) → (𝑋 − 1) ∈ (-∞(,)𝐵))
8483adantr 480 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (-∞(,)𝐵))
85 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → (𝐴(,)𝐵) = (-∞(,)𝐵))
8685eleq2d 2824 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8786adantl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (-∞(,)𝐵)))
8884, 87mpbird 256 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) ∈ (𝐴(,)𝐵))
8977adantr 480 . . . . . . . . . . . . 13 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → (𝑋 − 1) < 𝑋)
9088, 89jca 511 . . . . . . . . . . . 12 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
9190adantr 480 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋))
92 eleq1 2826 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 ∈ (𝐴(,)𝐵) ↔ (𝑋 − 1) ∈ (𝐴(,)𝐵)))
93 breq1 5073 . . . . . . . . . . . . 13 (𝑦 = (𝑋 − 1) → (𝑦 < 𝑋 ↔ (𝑋 − 1) < 𝑋))
9492, 93anbi12d 630 . . . . . . . . . . . 12 (𝑦 = (𝑋 − 1) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9594adantl 481 . . . . . . . . . . 11 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋) ↔ ((𝑋 − 1) ∈ (𝐴(,)𝐵) ∧ (𝑋 − 1) < 𝑋)))
9691, 95mpbird 256 . . . . . . . . . 10 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑦 < 𝑋))
9796, 41syl 17 . . . . . . . . 9 (((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) ∧ 𝑦 = (𝑋 − 1)) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
9897expcom 413 . . . . . . . 8 (𝑦 = (𝑋 − 1) → ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
9971, 7, 98spcimgf 3518 . . . . . . 7 ((𝑋 − 1) ∈ V → (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10070, 99ax-mp 5 . . . . . 6 (∀𝑦(𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
10169, 100sylbir 234 . . . . 5 ((𝑋 ∈ (𝐴(,)𝐵) ∧ 𝐴 = -∞) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
102101expcom 413 . . . 4 (𝐴 = -∞ → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
10346, 68, 1023jaoi 1425 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1043, 103sylbi 216 . 2 (𝐴 ∈ ℝ* → (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋))
1052, 104mpcom 38 1 (𝑋 ∈ (𝐴(,)𝐵) → ∃𝑦 ∈ (𝐴(,)𝐵)𝑦 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cmin 11135   / cdiv 11562  2c2 11958  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-ioo 13012
This theorem is referenced by:  relowlpssretop  35462
  Copyright terms: Public domain W3C validator