MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Structured version   Visualization version   GIF version

Theorem nmlno0lem 29735
Description: Lemma for nmlno0i 29736. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
nmlno0lem.u 𝑈 ∈ NrmCVec
nmlno0lem.w 𝑊 ∈ NrmCVec
nmlno0lem.l 𝑇𝐿
nmlno0lem.1 𝑋 = (BaseSet‘𝑈)
nmlno0lem.2 𝑌 = (BaseSet‘𝑊)
nmlno0lem.r 𝑅 = ( ·𝑠OLD𝑈)
nmlno0lem.s 𝑆 = ( ·𝑠OLD𝑊)
nmlno0lem.p 𝑃 = (0vec𝑈)
nmlno0lem.q 𝑄 = (0vec𝑊)
nmlno0lem.k 𝐾 = (normCV𝑈)
nmlno0lem.m 𝑀 = (normCV𝑊)
Assertion
Ref Expression
nmlno0lem ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)

Proof of Theorem nmlno0lem
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15 𝑈 ∈ NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16 𝑋 = (BaseSet‘𝑈)
3 nmlno0lem.k . . . . . . . . . . . . . . . 16 𝐾 = (normCV𝑈)
42, 3nvcl 29603 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐾𝑥) ∈ ℝ)
51, 4mpan 688 . . . . . . . . . . . . . 14 (𝑥𝑋 → (𝐾𝑥) ∈ ℝ)
65recnd 11183 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝐾𝑥) ∈ ℂ)
76adantr 481 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ∈ ℂ)
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17 𝑃 = (0vec𝑈)
92, 8, 3nvz 29611 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
101, 9mpan 688 . . . . . . . . . . . . . . 15 (𝑥𝑋 → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
11 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑃 → (𝑇𝑥) = (𝑇𝑃))
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17 𝑊 ∈ NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18 𝑄 = (0vec𝑊)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
172, 14, 8, 15, 16lno0 29698 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑃) = 𝑄)
181, 12, 13, 17mp3an 1461 . . . . . . . . . . . . . . . 16 (𝑇𝑃) = 𝑄
1911, 18eqtrdi 2792 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝑇𝑥) = 𝑄)
2010, 19syl6bi 252 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝐾𝑥) = 0 → (𝑇𝑥) = 𝑄))
2120necon3d 2964 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → (𝐾𝑥) ≠ 0))
2221imp 407 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ≠ 0)
237, 22recne0d 11925 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ≠ 0)
24 simpr 485 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ≠ 𝑄)
257, 22reccld 11924 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ∈ ℂ)
262, 14, 16lnof 29697 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
271, 12, 13, 26mp3an 1461 . . . . . . . . . . . . . . . 16 𝑇:𝑋𝑌
2827ffvelcdmi 7034 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ 𝑌)
2928adantr 481 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ∈ 𝑌)
30 nmlno0lem.s . . . . . . . . . . . . . . . 16 𝑆 = ( ·𝑠OLD𝑊)
3114, 30, 15nvmul0or 29592 . . . . . . . . . . . . . . 15 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3212, 31mp3an1 1448 . . . . . . . . . . . . . 14 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3325, 29, 32syl2anc 584 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3433necon3abid 2980 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
35 neanior 3037 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄) ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄))
3634, 35bitr4di 288 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄)))
3723, 24, 36mpbir2and 711 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄)
3814, 30nvscl 29568 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
3912, 38mp3an1 1448 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
4025, 29, 39syl2anc 584 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
41 nmlno0lem.m . . . . . . . . . . . 12 𝑀 = (normCV𝑊)
4214, 15, 41nvgt0 29616 . . . . . . . . . . 11 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4312, 40, 42sylancr 587 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4437, 43mpbid 231 . . . . . . . . 9 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
4544ex 413 . . . . . . . 8 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4645adantl 482 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4714, 41nmosetre 29706 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ)
4812, 27, 47mp2an 690 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ
49 ressxr 11199 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
5048, 49sstri 3953 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ*
51 simpl 483 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 𝑥𝑋)
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17 𝑅 = ( ·𝑠OLD𝑈)
532, 52nvscl 29568 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
541, 53mp3an1 1448 . . . . . . . . . . . . . . 15 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5525, 51, 54syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5619necon3i 2976 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 𝑄𝑥𝑃)
572, 52, 8, 3nv1 29617 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
581, 57mp3an1 1448 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
5956, 58sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
60 1re 11155 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
6159, 60eqeltrdi 2846 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ)
62 eqle 11257 . . . . . . . . . . . . . . 15 (((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ ∧ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
6361, 59, 62syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
641, 12, 133pm3.2i 1339 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
652, 52, 30, 16lnomul 29702 . . . . . . . . . . . . . . . . . 18 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋)) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6664, 65mpan 688 . . . . . . . . . . . . . . . . 17 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6725, 51, 66syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6867eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))
6968fveq2d 6846 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
70 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝐾𝑧) = (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)))
7170breq1d 5115 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝐾𝑧) ≤ 1 ↔ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1))
72 2fveq3 6847 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝑀‘(𝑇𝑧)) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
7372eqeq2d 2747 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))))
7471, 73anbi12d 631 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))) ↔ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))))
7574rspcev 3581 . . . . . . . . . . . . . 14 ((((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋 ∧ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7655, 63, 69, 75syl12anc 835 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
77 fvex 6855 . . . . . . . . . . . . . 14 (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ V
78 eqeq1 2740 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (𝑦 = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7978anbi2d 629 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8079rexbidv 3175 . . . . . . . . . . . . . 14 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8177, 80elab 3630 . . . . . . . . . . . . 13 ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
8276, 81sylibr 233 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))})
83 supxrub 13243 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ* ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8450, 82, 83sylancr 587 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8584adantll 712 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
86 nmlno0.3 . . . . . . . . . . . . . . 15 𝑁 = (𝑈 normOpOLD 𝑊)
872, 14, 3, 41, 86nmooval 29705 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
881, 12, 27, 87mp3an 1461 . . . . . . . . . . . . 13 (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < )
8988eqeq1i 2741 . . . . . . . . . . . 12 ((𝑁𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9089biimpi 215 . . . . . . . . . . 11 ((𝑁𝑇) = 0 → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9190ad2antrr 724 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9285, 91breqtrd 5131 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0)
9314, 41nvcl 29603 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
9412, 40, 93sylancr 587 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
95 0re 11157 . . . . . . . . . . 11 0 ∈ ℝ
96 lenlt 11233 . . . . . . . . . . 11 (((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9794, 95, 96sylancl 586 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9897adantll 712 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9992, 98mpbid 231 . . . . . . . 8 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
10099ex 413 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
10146, 100pm2.65d 195 . . . . . 6 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ¬ (𝑇𝑥) ≠ 𝑄)
102 nne 2947 . . . . . 6 (¬ (𝑇𝑥) ≠ 𝑄 ↔ (𝑇𝑥) = 𝑄)
103101, 102sylib 217 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = 𝑄)
104 nmlno0.0 . . . . . . . 8 𝑍 = (𝑈 0op 𝑊)
1052, 15, 1040oval 29730 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
1061, 12, 105mp3an12 1451 . . . . . 6 (𝑥𝑋 → (𝑍𝑥) = 𝑄)
107106adantl 482 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
108103, 107eqtr4d 2779 . . . 4 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = (𝑍𝑥))
109108ralrimiva 3143 . . 3 ((𝑁𝑇) = 0 → ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
110 ffn 6668 . . . . 5 (𝑇:𝑋𝑌𝑇 Fn 𝑋)
11127, 110ax-mp 5 . . . 4 𝑇 Fn 𝑋
1122, 14, 1040oo 29731 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
1131, 12, 112mp2an 690 . . . . 5 𝑍:𝑋𝑌
114 ffn 6668 . . . . 5 (𝑍:𝑋𝑌𝑍 Fn 𝑋)
115113, 114ax-mp 5 . . . 4 𝑍 Fn 𝑋
116 eqfnfv 6982 . . . 4 ((𝑇 Fn 𝑋𝑍 Fn 𝑋) → (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥)))
117111, 115, 116mp2an 690 . . 3 (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
118109, 117sylibr 233 . 2 ((𝑁𝑇) = 0 → 𝑇 = 𝑍)
119 fveq2 6842 . . 3 (𝑇 = 𝑍 → (𝑁𝑇) = (𝑁𝑍))
12086, 104nmoo0 29733 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
1211, 12, 120mp2an 690 . . 3 (𝑁𝑍) = 0
122119, 121eqtrdi 2792 . 2 (𝑇 = 𝑍 → (𝑁𝑇) = 0)
123118, 122impbii 208 1 ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  NrmCVeccnv 29526  BaseSetcba 29528   ·𝑠OLD cns 29529  0veccn0v 29530  normCVcnmcv 29532   LnOp clno 29682   normOpOLD cnmoo 29683   0op c0o 29685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-nmcv 29542  df-lno 29686  df-nmoo 29687  df-0o 29689
This theorem is referenced by:  nmlno0i  29736
  Copyright terms: Public domain W3C validator