MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Structured version   Visualization version   GIF version

Theorem nmlno0lem 30825
Description: Lemma for nmlno0i 30826. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
nmlno0lem.u 𝑈 ∈ NrmCVec
nmlno0lem.w 𝑊 ∈ NrmCVec
nmlno0lem.l 𝑇𝐿
nmlno0lem.1 𝑋 = (BaseSet‘𝑈)
nmlno0lem.2 𝑌 = (BaseSet‘𝑊)
nmlno0lem.r 𝑅 = ( ·𝑠OLD𝑈)
nmlno0lem.s 𝑆 = ( ·𝑠OLD𝑊)
nmlno0lem.p 𝑃 = (0vec𝑈)
nmlno0lem.q 𝑄 = (0vec𝑊)
nmlno0lem.k 𝐾 = (normCV𝑈)
nmlno0lem.m 𝑀 = (normCV𝑊)
Assertion
Ref Expression
nmlno0lem ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)

Proof of Theorem nmlno0lem
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15 𝑈 ∈ NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16 𝑋 = (BaseSet‘𝑈)
3 nmlno0lem.k . . . . . . . . . . . . . . . 16 𝐾 = (normCV𝑈)
42, 3nvcl 30693 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐾𝑥) ∈ ℝ)
51, 4mpan 689 . . . . . . . . . . . . . 14 (𝑥𝑋 → (𝐾𝑥) ∈ ℝ)
65recnd 11318 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝐾𝑥) ∈ ℂ)
76adantr 480 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ∈ ℂ)
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17 𝑃 = (0vec𝑈)
92, 8, 3nvz 30701 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
101, 9mpan 689 . . . . . . . . . . . . . . 15 (𝑥𝑋 → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
11 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑃 → (𝑇𝑥) = (𝑇𝑃))
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17 𝑊 ∈ NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18 𝑄 = (0vec𝑊)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
172, 14, 8, 15, 16lno0 30788 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑃) = 𝑄)
181, 12, 13, 17mp3an 1461 . . . . . . . . . . . . . . . 16 (𝑇𝑃) = 𝑄
1911, 18eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝑇𝑥) = 𝑄)
2010, 19biimtrdi 253 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝐾𝑥) = 0 → (𝑇𝑥) = 𝑄))
2120necon3d 2967 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → (𝐾𝑥) ≠ 0))
2221imp 406 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ≠ 0)
237, 22recne0d 12064 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ≠ 0)
24 simpr 484 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ≠ 𝑄)
257, 22reccld 12063 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ∈ ℂ)
262, 14, 16lnof 30787 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
271, 12, 13, 26mp3an 1461 . . . . . . . . . . . . . . . 16 𝑇:𝑋𝑌
2827ffvelcdmi 7117 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ 𝑌)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ∈ 𝑌)
30 nmlno0lem.s . . . . . . . . . . . . . . . 16 𝑆 = ( ·𝑠OLD𝑊)
3114, 30, 15nvmul0or 30682 . . . . . . . . . . . . . . 15 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3212, 31mp3an1 1448 . . . . . . . . . . . . . 14 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3325, 29, 32syl2anc 583 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3433necon3abid 2983 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
35 neanior 3041 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄) ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄))
3634, 35bitr4di 289 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄)))
3723, 24, 36mpbir2and 712 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄)
3814, 30nvscl 30658 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
3912, 38mp3an1 1448 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
4025, 29, 39syl2anc 583 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
41 nmlno0lem.m . . . . . . . . . . . 12 𝑀 = (normCV𝑊)
4214, 15, 41nvgt0 30706 . . . . . . . . . . 11 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4312, 40, 42sylancr 586 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4437, 43mpbid 232 . . . . . . . . 9 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
4544ex 412 . . . . . . . 8 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4645adantl 481 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4714, 41nmosetre 30796 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ)
4812, 27, 47mp2an 691 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ
49 ressxr 11334 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
5048, 49sstri 4018 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ*
51 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 𝑥𝑋)
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17 𝑅 = ( ·𝑠OLD𝑈)
532, 52nvscl 30658 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
541, 53mp3an1 1448 . . . . . . . . . . . . . . 15 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5525, 51, 54syl2anc 583 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5619necon3i 2979 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 𝑄𝑥𝑃)
572, 52, 8, 3nv1 30707 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
581, 57mp3an1 1448 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
5956, 58sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
60 1re 11290 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
6159, 60eqeltrdi 2852 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ)
62 eqle 11392 . . . . . . . . . . . . . . 15 (((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ ∧ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
6361, 59, 62syl2anc 583 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
641, 12, 133pm3.2i 1339 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
652, 52, 30, 16lnomul 30792 . . . . . . . . . . . . . . . . . 18 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋)) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6664, 65mpan 689 . . . . . . . . . . . . . . . . 17 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6725, 51, 66syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6867eqcomd 2746 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))
6968fveq2d 6924 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
70 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝐾𝑧) = (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)))
7170breq1d 5176 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝐾𝑧) ≤ 1 ↔ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1))
72 2fveq3 6925 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝑀‘(𝑇𝑧)) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
7372eqeq2d 2751 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))))
7471, 73anbi12d 631 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))) ↔ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))))
7574rspcev 3635 . . . . . . . . . . . . . 14 ((((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋 ∧ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7655, 63, 69, 75syl12anc 836 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
77 fvex 6933 . . . . . . . . . . . . . 14 (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ V
78 eqeq1 2744 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (𝑦 = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7978anbi2d 629 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8079rexbidv 3185 . . . . . . . . . . . . . 14 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8177, 80elab 3694 . . . . . . . . . . . . 13 ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
8276, 81sylibr 234 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))})
83 supxrub 13386 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ* ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8450, 82, 83sylancr 586 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8584adantll 713 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
86 nmlno0.3 . . . . . . . . . . . . . . 15 𝑁 = (𝑈 normOpOLD 𝑊)
872, 14, 3, 41, 86nmooval 30795 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
881, 12, 27, 87mp3an 1461 . . . . . . . . . . . . 13 (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < )
8988eqeq1i 2745 . . . . . . . . . . . 12 ((𝑁𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9089biimpi 216 . . . . . . . . . . 11 ((𝑁𝑇) = 0 → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9190ad2antrr 725 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9285, 91breqtrd 5192 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0)
9314, 41nvcl 30693 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
9412, 40, 93sylancr 586 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
95 0re 11292 . . . . . . . . . . 11 0 ∈ ℝ
96 lenlt 11368 . . . . . . . . . . 11 (((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9794, 95, 96sylancl 585 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9897adantll 713 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9992, 98mpbid 232 . . . . . . . 8 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
10099ex 412 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
10146, 100pm2.65d 196 . . . . . 6 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ¬ (𝑇𝑥) ≠ 𝑄)
102 nne 2950 . . . . . 6 (¬ (𝑇𝑥) ≠ 𝑄 ↔ (𝑇𝑥) = 𝑄)
103101, 102sylib 218 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = 𝑄)
104 nmlno0.0 . . . . . . . 8 𝑍 = (𝑈 0op 𝑊)
1052, 15, 1040oval 30820 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
1061, 12, 105mp3an12 1451 . . . . . 6 (𝑥𝑋 → (𝑍𝑥) = 𝑄)
107106adantl 481 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
108103, 107eqtr4d 2783 . . . 4 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = (𝑍𝑥))
109108ralrimiva 3152 . . 3 ((𝑁𝑇) = 0 → ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
110 ffn 6747 . . . . 5 (𝑇:𝑋𝑌𝑇 Fn 𝑋)
11127, 110ax-mp 5 . . . 4 𝑇 Fn 𝑋
1122, 14, 1040oo 30821 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
1131, 12, 112mp2an 691 . . . . 5 𝑍:𝑋𝑌
114 ffn 6747 . . . . 5 (𝑍:𝑋𝑌𝑍 Fn 𝑋)
115113, 114ax-mp 5 . . . 4 𝑍 Fn 𝑋
116 eqfnfv 7064 . . . 4 ((𝑇 Fn 𝑋𝑍 Fn 𝑋) → (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥)))
117111, 115, 116mp2an 691 . . 3 (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
118109, 117sylibr 234 . 2 ((𝑁𝑇) = 0 → 𝑇 = 𝑍)
119 fveq2 6920 . . 3 (𝑇 = 𝑍 → (𝑁𝑇) = (𝑁𝑍))
12086, 104nmoo0 30823 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
1211, 12, 120mp2an 691 . . 3 (𝑁𝑍) = 0
122119, 121eqtrdi 2796 . 2 (𝑇 = 𝑍 → (𝑁𝑇) = 0)
123118, 122impbii 209 1 ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976   class class class wbr 5166   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  NrmCVeccnv 30616  BaseSetcba 30618   ·𝑠OLD cns 30619  0veccn0v 30620  normCVcnmcv 30622   LnOp clno 30772   normOpOLD cnmoo 30773   0op c0o 30775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-grpo 30525  df-gid 30526  df-ginv 30527  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632  df-lno 30776  df-nmoo 30777  df-0o 30779
This theorem is referenced by:  nmlno0i  30826
  Copyright terms: Public domain W3C validator