MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Structured version   Visualization version   GIF version

Theorem nmlno0lem 30720
Description: Lemma for nmlno0i 30721. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
nmlno0lem.u 𝑈 ∈ NrmCVec
nmlno0lem.w 𝑊 ∈ NrmCVec
nmlno0lem.l 𝑇𝐿
nmlno0lem.1 𝑋 = (BaseSet‘𝑈)
nmlno0lem.2 𝑌 = (BaseSet‘𝑊)
nmlno0lem.r 𝑅 = ( ·𝑠OLD𝑈)
nmlno0lem.s 𝑆 = ( ·𝑠OLD𝑊)
nmlno0lem.p 𝑃 = (0vec𝑈)
nmlno0lem.q 𝑄 = (0vec𝑊)
nmlno0lem.k 𝐾 = (normCV𝑈)
nmlno0lem.m 𝑀 = (normCV𝑊)
Assertion
Ref Expression
nmlno0lem ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)

Proof of Theorem nmlno0lem
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15 𝑈 ∈ NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16 𝑋 = (BaseSet‘𝑈)
3 nmlno0lem.k . . . . . . . . . . . . . . . 16 𝐾 = (normCV𝑈)
42, 3nvcl 30588 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐾𝑥) ∈ ℝ)
51, 4mpan 690 . . . . . . . . . . . . . 14 (𝑥𝑋 → (𝐾𝑥) ∈ ℝ)
65recnd 11261 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝐾𝑥) ∈ ℂ)
76adantr 480 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ∈ ℂ)
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17 𝑃 = (0vec𝑈)
92, 8, 3nvz 30596 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
101, 9mpan 690 . . . . . . . . . . . . . . 15 (𝑥𝑋 → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
11 fveq2 6875 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑃 → (𝑇𝑥) = (𝑇𝑃))
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17 𝑊 ∈ NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18 𝑄 = (0vec𝑊)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
172, 14, 8, 15, 16lno0 30683 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑃) = 𝑄)
181, 12, 13, 17mp3an 1463 . . . . . . . . . . . . . . . 16 (𝑇𝑃) = 𝑄
1911, 18eqtrdi 2786 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝑇𝑥) = 𝑄)
2010, 19biimtrdi 253 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝐾𝑥) = 0 → (𝑇𝑥) = 𝑄))
2120necon3d 2953 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → (𝐾𝑥) ≠ 0))
2221imp 406 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ≠ 0)
237, 22recne0d 12009 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ≠ 0)
24 simpr 484 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ≠ 𝑄)
257, 22reccld 12008 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ∈ ℂ)
262, 14, 16lnof 30682 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
271, 12, 13, 26mp3an 1463 . . . . . . . . . . . . . . . 16 𝑇:𝑋𝑌
2827ffvelcdmi 7072 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ 𝑌)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ∈ 𝑌)
30 nmlno0lem.s . . . . . . . . . . . . . . . 16 𝑆 = ( ·𝑠OLD𝑊)
3114, 30, 15nvmul0or 30577 . . . . . . . . . . . . . . 15 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3212, 31mp3an1 1450 . . . . . . . . . . . . . 14 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3325, 29, 32syl2anc 584 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3433necon3abid 2968 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
35 neanior 3025 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄) ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄))
3634, 35bitr4di 289 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄)))
3723, 24, 36mpbir2and 713 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄)
3814, 30nvscl 30553 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
3912, 38mp3an1 1450 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
4025, 29, 39syl2anc 584 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
41 nmlno0lem.m . . . . . . . . . . . 12 𝑀 = (normCV𝑊)
4214, 15, 41nvgt0 30601 . . . . . . . . . . 11 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4312, 40, 42sylancr 587 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4437, 43mpbid 232 . . . . . . . . 9 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
4544ex 412 . . . . . . . 8 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4645adantl 481 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4714, 41nmosetre 30691 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ)
4812, 27, 47mp2an 692 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ
49 ressxr 11277 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
5048, 49sstri 3968 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ*
51 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 𝑥𝑋)
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17 𝑅 = ( ·𝑠OLD𝑈)
532, 52nvscl 30553 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
541, 53mp3an1 1450 . . . . . . . . . . . . . . 15 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5525, 51, 54syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5619necon3i 2964 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 𝑄𝑥𝑃)
572, 52, 8, 3nv1 30602 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
581, 57mp3an1 1450 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
5956, 58sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
60 1re 11233 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
6159, 60eqeltrdi 2842 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ)
62 eqle 11335 . . . . . . . . . . . . . . 15 (((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ ∧ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
6361, 59, 62syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
641, 12, 133pm3.2i 1340 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
652, 52, 30, 16lnomul 30687 . . . . . . . . . . . . . . . . . 18 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋)) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6664, 65mpan 690 . . . . . . . . . . . . . . . . 17 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6725, 51, 66syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6867eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))
6968fveq2d 6879 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
70 fveq2 6875 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝐾𝑧) = (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)))
7170breq1d 5129 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝐾𝑧) ≤ 1 ↔ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1))
72 2fveq3 6880 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝑀‘(𝑇𝑧)) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
7372eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))))
7471, 73anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))) ↔ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))))
7574rspcev 3601 . . . . . . . . . . . . . 14 ((((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋 ∧ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7655, 63, 69, 75syl12anc 836 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
77 fvex 6888 . . . . . . . . . . . . . 14 (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ V
78 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (𝑦 = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7978anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8079rexbidv 3164 . . . . . . . . . . . . . 14 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8177, 80elab 3658 . . . . . . . . . . . . 13 ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
8276, 81sylibr 234 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))})
83 supxrub 13338 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ* ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8450, 82, 83sylancr 587 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8584adantll 714 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
86 nmlno0.3 . . . . . . . . . . . . . . 15 𝑁 = (𝑈 normOpOLD 𝑊)
872, 14, 3, 41, 86nmooval 30690 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
881, 12, 27, 87mp3an 1463 . . . . . . . . . . . . 13 (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < )
8988eqeq1i 2740 . . . . . . . . . . . 12 ((𝑁𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9089biimpi 216 . . . . . . . . . . 11 ((𝑁𝑇) = 0 → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9190ad2antrr 726 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9285, 91breqtrd 5145 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0)
9314, 41nvcl 30588 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
9412, 40, 93sylancr 587 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
95 0re 11235 . . . . . . . . . . 11 0 ∈ ℝ
96 lenlt 11311 . . . . . . . . . . 11 (((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9794, 95, 96sylancl 586 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9897adantll 714 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9992, 98mpbid 232 . . . . . . . 8 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
10099ex 412 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
10146, 100pm2.65d 196 . . . . . 6 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ¬ (𝑇𝑥) ≠ 𝑄)
102 nne 2936 . . . . . 6 (¬ (𝑇𝑥) ≠ 𝑄 ↔ (𝑇𝑥) = 𝑄)
103101, 102sylib 218 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = 𝑄)
104 nmlno0.0 . . . . . . . 8 𝑍 = (𝑈 0op 𝑊)
1052, 15, 1040oval 30715 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
1061, 12, 105mp3an12 1453 . . . . . 6 (𝑥𝑋 → (𝑍𝑥) = 𝑄)
107106adantl 481 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
108103, 107eqtr4d 2773 . . . 4 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = (𝑍𝑥))
109108ralrimiva 3132 . . 3 ((𝑁𝑇) = 0 → ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
110 ffn 6705 . . . . 5 (𝑇:𝑋𝑌𝑇 Fn 𝑋)
11127, 110ax-mp 5 . . . 4 𝑇 Fn 𝑋
1122, 14, 1040oo 30716 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
1131, 12, 112mp2an 692 . . . . 5 𝑍:𝑋𝑌
114 ffn 6705 . . . . 5 (𝑍:𝑋𝑌𝑍 Fn 𝑋)
115113, 114ax-mp 5 . . . 4 𝑍 Fn 𝑋
116 eqfnfv 7020 . . . 4 ((𝑇 Fn 𝑋𝑍 Fn 𝑋) → (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥)))
117111, 115, 116mp2an 692 . . 3 (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
118109, 117sylibr 234 . 2 ((𝑁𝑇) = 0 → 𝑇 = 𝑍)
119 fveq2 6875 . . 3 (𝑇 = 𝑍 → (𝑁𝑇) = (𝑁𝑍))
12086, 104nmoo0 30718 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
1211, 12, 120mp2an 692 . . 3 (𝑁𝑍) = 0
122119, 121eqtrdi 2786 . 2 (𝑇 = 𝑍 → (𝑁𝑇) = 0)
123118, 122impbii 209 1 ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  wss 3926   class class class wbr 5119   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128  *cxr 11266   < clt 11267  cle 11268   / cdiv 11892  NrmCVeccnv 30511  BaseSetcba 30513   ·𝑠OLD cns 30514  0veccn0v 30515  normCVcnmcv 30517   LnOp clno 30667   normOpOLD cnmoo 30668   0op c0o 30670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-grpo 30420  df-gid 30421  df-ginv 30422  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-nmcv 30527  df-lno 30671  df-nmoo 30672  df-0o 30674
This theorem is referenced by:  nmlno0i  30721
  Copyright terms: Public domain W3C validator