MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlno0lem Structured version   Visualization version   GIF version

Theorem nmlno0lem 30695
Description: Lemma for nmlno0i 30696. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlno0.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlno0.0 𝑍 = (𝑈 0op 𝑊)
nmlno0.7 𝐿 = (𝑈 LnOp 𝑊)
nmlno0lem.u 𝑈 ∈ NrmCVec
nmlno0lem.w 𝑊 ∈ NrmCVec
nmlno0lem.l 𝑇𝐿
nmlno0lem.1 𝑋 = (BaseSet‘𝑈)
nmlno0lem.2 𝑌 = (BaseSet‘𝑊)
nmlno0lem.r 𝑅 = ( ·𝑠OLD𝑈)
nmlno0lem.s 𝑆 = ( ·𝑠OLD𝑊)
nmlno0lem.p 𝑃 = (0vec𝑈)
nmlno0lem.q 𝑄 = (0vec𝑊)
nmlno0lem.k 𝐾 = (normCV𝑈)
nmlno0lem.m 𝑀 = (normCV𝑊)
Assertion
Ref Expression
nmlno0lem ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)

Proof of Theorem nmlno0lem
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmlno0lem.u . . . . . . . . . . . . . . 15 𝑈 ∈ NrmCVec
2 nmlno0lem.1 . . . . . . . . . . . . . . . 16 𝑋 = (BaseSet‘𝑈)
3 nmlno0lem.k . . . . . . . . . . . . . . . 16 𝐾 = (normCV𝑈)
42, 3nvcl 30563 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝐾𝑥) ∈ ℝ)
51, 4mpan 690 . . . . . . . . . . . . . 14 (𝑥𝑋 → (𝐾𝑥) ∈ ℝ)
65recnd 11178 . . . . . . . . . . . . 13 (𝑥𝑋 → (𝐾𝑥) ∈ ℂ)
76adantr 480 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ∈ ℂ)
8 nmlno0lem.p . . . . . . . . . . . . . . . . 17 𝑃 = (0vec𝑈)
92, 8, 3nvz 30571 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
101, 9mpan 690 . . . . . . . . . . . . . . 15 (𝑥𝑋 → ((𝐾𝑥) = 0 ↔ 𝑥 = 𝑃))
11 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑃 → (𝑇𝑥) = (𝑇𝑃))
12 nmlno0lem.w . . . . . . . . . . . . . . . . 17 𝑊 ∈ NrmCVec
13 nmlno0lem.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
14 nmlno0lem.2 . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
15 nmlno0lem.q . . . . . . . . . . . . . . . . . 18 𝑄 = (0vec𝑊)
16 nmlno0.7 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
172, 14, 8, 15, 16lno0 30658 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑃) = 𝑄)
181, 12, 13, 17mp3an 1463 . . . . . . . . . . . . . . . 16 (𝑇𝑃) = 𝑄
1911, 18eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝑇𝑥) = 𝑄)
2010, 19biimtrdi 253 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝐾𝑥) = 0 → (𝑇𝑥) = 𝑄))
2120necon3d 2946 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → (𝐾𝑥) ≠ 0))
2221imp 406 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾𝑥) ≠ 0)
237, 22recne0d 11928 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ≠ 0)
24 simpr 484 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ≠ 𝑄)
257, 22reccld 11927 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (1 / (𝐾𝑥)) ∈ ℂ)
262, 14, 16lnof 30657 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑌)
271, 12, 13, 26mp3an 1463 . . . . . . . . . . . . . . . 16 𝑇:𝑋𝑌
2827ffvelcdmi 7037 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ 𝑌)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇𝑥) ∈ 𝑌)
30 nmlno0lem.s . . . . . . . . . . . . . . . 16 𝑆 = ( ·𝑠OLD𝑊)
3114, 30, 15nvmul0or 30552 . . . . . . . . . . . . . . 15 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3212, 31mp3an1 1450 . . . . . . . . . . . . . 14 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3325, 29, 32syl2anc 584 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = 𝑄 ↔ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
3433necon3abid 2961 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄)))
35 neanior 3018 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄) ↔ ¬ ((1 / (𝐾𝑥)) = 0 ∨ (𝑇𝑥) = 𝑄))
3634, 35bitr4di 289 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ ((1 / (𝐾𝑥)) ≠ 0 ∧ (𝑇𝑥) ≠ 𝑄)))
3723, 24, 36mpbir2and 713 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄)
3814, 30nvscl 30528 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
3912, 38mp3an1 1450 . . . . . . . . . . . 12 (((1 / (𝐾𝑥)) ∈ ℂ ∧ (𝑇𝑥) ∈ 𝑌) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
4025, 29, 39syl2anc 584 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌)
41 nmlno0lem.m . . . . . . . . . . . 12 𝑀 = (normCV𝑊)
4214, 15, 41nvgt0 30576 . . . . . . . . . . 11 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4312, 40, 42sylancr 587 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ≠ 𝑄 ↔ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4437, 43mpbid 232 . . . . . . . . 9 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
4544ex 412 . . . . . . . 8 (𝑥𝑋 → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4645adantl 481 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
4714, 41nmosetre 30666 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ)
4812, 27, 47mp2an 692 . . . . . . . . . . . . 13 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ
49 ressxr 11194 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
5048, 49sstri 3953 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ*
51 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → 𝑥𝑋)
52 nmlno0lem.r . . . . . . . . . . . . . . . . 17 𝑅 = ( ·𝑠OLD𝑈)
532, 52nvscl 30528 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
541, 53mp3an1 1450 . . . . . . . . . . . . . . 15 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5525, 51, 54syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋)
5619necon3i 2957 . . . . . . . . . . . . . . . . 17 ((𝑇𝑥) ≠ 𝑄𝑥𝑃)
572, 52, 8, 3nv1 30577 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
581, 57mp3an1 1450 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑥𝑃) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
5956, 58sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1)
60 1re 11150 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
6159, 60eqeltrdi 2836 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ)
62 eqle 11252 . . . . . . . . . . . . . . 15 (((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ∈ ℝ ∧ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) = 1) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
6361, 59, 62syl2anc 584 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1)
641, 12, 133pm3.2i 1340 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
652, 52, 30, 16lnomul 30662 . . . . . . . . . . . . . . . . . 18 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋)) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6664, 65mpan 690 . . . . . . . . . . . . . . . . 17 (((1 / (𝐾𝑥)) ∈ ℂ ∧ 𝑥𝑋) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6725, 51, 66syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)) = ((1 / (𝐾𝑥))𝑆(𝑇𝑥)))
6867eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) = (𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))
6968fveq2d 6844 . . . . . . . . . . . . . 14 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
70 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝐾𝑧) = (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)))
7170breq1d 5112 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝐾𝑧) ≤ 1 ↔ (𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1))
72 2fveq3 6845 . . . . . . . . . . . . . . . . 17 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (𝑀‘(𝑇𝑧)) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))
7372eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥)))))
7471, 73anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = ((1 / (𝐾𝑥))𝑅𝑥) → (((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))) ↔ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))))
7574rspcev 3585 . . . . . . . . . . . . . 14 ((((1 / (𝐾𝑥))𝑅𝑥) ∈ 𝑋 ∧ ((𝐾‘((1 / (𝐾𝑥))𝑅𝑥)) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇‘((1 / (𝐾𝑥))𝑅𝑥))))) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7655, 63, 69, 75syl12anc 836 . . . . . . . . . . . . 13 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
77 fvex 6853 . . . . . . . . . . . . . 14 (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ V
78 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (𝑦 = (𝑀‘(𝑇𝑧)) ↔ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
7978anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8079rexbidv 3157 . . . . . . . . . . . . . 14 (𝑦 = (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) → (∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧))) ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧)))))
8177, 80elab 3643 . . . . . . . . . . . . 13 ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ↔ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) = (𝑀‘(𝑇𝑧))))
8276, 81sylibr 234 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))})
83 supxrub 13260 . . . . . . . . . . . 12 (({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))} ⊆ ℝ* ∧ (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ {𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8450, 82, 83sylancr 587 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
8584adantll 714 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
86 nmlno0.3 . . . . . . . . . . . . . . 15 𝑁 = (𝑈 normOpOLD 𝑊)
872, 14, 3, 41, 86nmooval 30665 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ))
881, 12, 27, 87mp3an 1463 . . . . . . . . . . . . 13 (𝑁𝑇) = sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < )
8988eqeq1i 2734 . . . . . . . . . . . 12 ((𝑁𝑇) = 0 ↔ sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9089biimpi 216 . . . . . . . . . . 11 ((𝑁𝑇) = 0 → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9190ad2antrr 726 . . . . . . . . . 10 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → sup({𝑦 ∣ ∃𝑧𝑋 ((𝐾𝑧) ≤ 1 ∧ 𝑦 = (𝑀‘(𝑇𝑧)))}, ℝ*, < ) = 0)
9285, 91breqtrd 5128 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0)
9314, 41nvcl 30563 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ ((1 / (𝐾𝑥))𝑆(𝑇𝑥)) ∈ 𝑌) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
9412, 40, 93sylancr 587 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ)
95 0re 11152 . . . . . . . . . . 11 0 ∈ ℝ
96 lenlt 11228 . . . . . . . . . . 11 (((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9794, 95, 96sylancl 586 . . . . . . . . . 10 ((𝑥𝑋 ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9897adantll 714 . . . . . . . . 9 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ((𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))) ≤ 0 ↔ ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
9992, 98mpbid 232 . . . . . . . 8 ((((𝑁𝑇) = 0 ∧ 𝑥𝑋) ∧ (𝑇𝑥) ≠ 𝑄) → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥))))
10099ex 412 . . . . . . 7 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ((𝑇𝑥) ≠ 𝑄 → ¬ 0 < (𝑀‘((1 / (𝐾𝑥))𝑆(𝑇𝑥)))))
10146, 100pm2.65d 196 . . . . . 6 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → ¬ (𝑇𝑥) ≠ 𝑄)
102 nne 2929 . . . . . 6 (¬ (𝑇𝑥) ≠ 𝑄 ↔ (𝑇𝑥) = 𝑄)
103101, 102sylib 218 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = 𝑄)
104 nmlno0.0 . . . . . . . 8 𝑍 = (𝑈 0op 𝑊)
1052, 15, 1040oval 30690 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
1061, 12, 105mp3an12 1453 . . . . . 6 (𝑥𝑋 → (𝑍𝑥) = 𝑄)
107106adantl 481 . . . . 5 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑍𝑥) = 𝑄)
108103, 107eqtr4d 2767 . . . 4 (((𝑁𝑇) = 0 ∧ 𝑥𝑋) → (𝑇𝑥) = (𝑍𝑥))
109108ralrimiva 3125 . . 3 ((𝑁𝑇) = 0 → ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
110 ffn 6670 . . . . 5 (𝑇:𝑋𝑌𝑇 Fn 𝑋)
11127, 110ax-mp 5 . . . 4 𝑇 Fn 𝑋
1122, 14, 1040oo 30691 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
1131, 12, 112mp2an 692 . . . . 5 𝑍:𝑋𝑌
114 ffn 6670 . . . . 5 (𝑍:𝑋𝑌𝑍 Fn 𝑋)
115113, 114ax-mp 5 . . . 4 𝑍 Fn 𝑋
116 eqfnfv 6985 . . . 4 ((𝑇 Fn 𝑋𝑍 Fn 𝑋) → (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥)))
117111, 115, 116mp2an 692 . . 3 (𝑇 = 𝑍 ↔ ∀𝑥𝑋 (𝑇𝑥) = (𝑍𝑥))
118109, 117sylibr 234 . 2 ((𝑁𝑇) = 0 → 𝑇 = 𝑍)
119 fveq2 6840 . . 3 (𝑇 = 𝑍 → (𝑁𝑇) = (𝑁𝑍))
12086, 104nmoo0 30693 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁𝑍) = 0)
1211, 12, 120mp2an 692 . . 3 (𝑁𝑍) = 0
122119, 121eqtrdi 2780 . 2 (𝑇 = 𝑍 → (𝑁𝑇) = 0)
123118, 122impbii 209 1 ((𝑁𝑇) = 0 ↔ 𝑇 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3911   class class class wbr 5102   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  NrmCVeccnv 30486  BaseSetcba 30488   ·𝑠OLD cns 30489  0veccn0v 30490  normCVcnmcv 30492   LnOp clno 30642   normOpOLD cnmoo 30643   0op c0o 30645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-grpo 30395  df-gid 30396  df-ginv 30397  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502  df-lno 30646  df-nmoo 30647  df-0o 30649
This theorem is referenced by:  nmlno0i  30696
  Copyright terms: Public domain W3C validator