MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem3 Structured version   Visualization version   GIF version

Theorem vdwnnlem3 16975
Description: Lemma for vdwnn 16976. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
vdwnn.4 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
Assertion
Ref Expression
vdwnnlem3 ¬ 𝜑
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝑐   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwnn.1 . . 3 (𝜑𝑅 ∈ Fin)
2 vdwnn.3 . . . . . . 7 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
32ssrab3 4048 . . . . . 6 𝑆 ⊆ ℕ
4 nnuz 12843 . . . . . . . 8 ℕ = (ℤ‘1)
53, 4sseqtri 3998 . . . . . . 7 𝑆 ⊆ (ℤ‘1)
6 vdwnn.4 . . . . . . . 8 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
76r19.21bi 3230 . . . . . . 7 ((𝜑𝑐𝑅) → 𝑆 ≠ ∅)
8 infssuzcl 12898 . . . . . . 7 ((𝑆 ⊆ (ℤ‘1) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
95, 7, 8sylancr 587 . . . . . 6 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
103, 9sselid 3947 . . . . 5 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
1110nnred 12208 . . . 4 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
1211ralrimiva 3126 . . 3 (𝜑 → ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ)
13 fimaxre3 12136 . . 3 ((𝑅 ∈ Fin ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
141, 12, 13syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
15 vdwnn.2 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑅)
16 1nn 12204 . . . . . . . . 9 1 ∈ ℕ
17 ffvelcdm 7056 . . . . . . . . 9 ((𝐹:ℕ⟶𝑅 ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ 𝑅)
1815, 16, 17sylancl 586 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑅)
1918ne0d 4308 . . . . . . 7 (𝜑𝑅 ≠ ∅)
2019adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ ∅)
21 r19.2z 4461 . . . . . . 7 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
2221ex 412 . . . . . 6 (𝑅 ≠ ∅ → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
2320, 22syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
24 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ∈ ℝ)
25 fllep1 13770 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2624, 25syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ≤ ((⌊‘𝑥) + 1))
2711adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
2824flcld 13767 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (⌊‘𝑥) ∈ ℤ)
2928peano2zd 12648 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℤ)
3029zred 12645 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℝ)
31 letr 11275 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3227, 24, 30, 31syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3326, 32mpan2d 694 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3410adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
3534nnzd 12563 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℤ)
36 eluz 12814 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℤ ∧ ((⌊‘𝑥) + 1) ∈ ℤ) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3735, 29, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
38 simpll 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝜑)
399adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
401, 15, 2vdwnnlem2 16974 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < ))) → (inf(𝑆, ℝ, < ) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ 𝑆))
4140impancom 451 . . . . . . . . . 10 ((𝜑 ∧ inf(𝑆, ℝ, < ) ∈ 𝑆) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4238, 39, 41syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4337, 42sylbird 260 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4433, 43syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ 𝑆))
453sseli 3945 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ)
4645nnnn0d 12510 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ0)
4744, 46syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
4847rexlimdva 3135 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
491adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝑅 ∈ Fin)
5015adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝐹:ℕ⟶𝑅)
51 simpr 484 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ((⌊‘𝑥) + 1) ∈ ℕ0)
52 vdwnnlem1 16973 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5349, 50, 51, 52syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5453ex 412 . . . . . 6 (𝜑 → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5554adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5623, 48, 553syld 60 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
57 oveq1 7397 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑥) + 1) → (𝑘 − 1) = (((⌊‘𝑥) + 1) − 1))
5857oveq2d 7406 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑥) + 1) → (0...(𝑘 − 1)) = (0...(((⌊‘𝑥) + 1) − 1)))
5958raleqdv 3301 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑥) + 1) → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
60592rexbidv 3203 . . . . . . . . . 10 (𝑘 = ((⌊‘𝑥) + 1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6160notbid 318 . . . . . . . . 9 (𝑘 = ((⌊‘𝑥) + 1) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6261, 2elrab2 3665 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 ↔ (((⌊‘𝑥) + 1) ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6362simprbi 496 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6444, 63syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6564ralimdva 3146 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
66 ralnex 3056 . . . . 5 (∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6765, 66imbitrdi 251 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6856, 67pm2.65d 196 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
6968nrexdv 3129 . 2 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7014, 69pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-hash 14303  df-vdwap 16946  df-vdwmc 16947  df-vdwpc 16948
This theorem is referenced by:  vdwnn  16976
  Copyright terms: Public domain W3C validator