MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem3 Structured version   Visualization version   GIF version

Theorem vdwnnlem3 16698
Description: Lemma for vdwnn 16699. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
vdwnn.4 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
Assertion
Ref Expression
vdwnnlem3 ¬ 𝜑
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝑐   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwnn.1 . . 3 (𝜑𝑅 ∈ Fin)
2 vdwnn.3 . . . . . . 7 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
32ssrab3 4015 . . . . . 6 𝑆 ⊆ ℕ
4 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
53, 4sseqtri 3957 . . . . . . 7 𝑆 ⊆ (ℤ‘1)
6 vdwnn.4 . . . . . . . 8 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
76r19.21bi 3134 . . . . . . 7 ((𝜑𝑐𝑅) → 𝑆 ≠ ∅)
8 infssuzcl 12672 . . . . . . 7 ((𝑆 ⊆ (ℤ‘1) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
95, 7, 8sylancr 587 . . . . . 6 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
103, 9sselid 3919 . . . . 5 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
1110nnred 11988 . . . 4 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
1211ralrimiva 3103 . . 3 (𝜑 → ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ)
13 fimaxre3 11921 . . 3 ((𝑅 ∈ Fin ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
141, 12, 13syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
15 vdwnn.2 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑅)
16 1nn 11984 . . . . . . . . 9 1 ∈ ℕ
17 ffvelrn 6959 . . . . . . . . 9 ((𝐹:ℕ⟶𝑅 ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ 𝑅)
1815, 16, 17sylancl 586 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑅)
1918ne0d 4269 . . . . . . 7 (𝜑𝑅 ≠ ∅)
2019adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ ∅)
21 r19.2z 4425 . . . . . . 7 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
2221ex 413 . . . . . 6 (𝑅 ≠ ∅ → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
2320, 22syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
24 simplr 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ∈ ℝ)
25 fllep1 13521 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2624, 25syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ≤ ((⌊‘𝑥) + 1))
2711adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
2824flcld 13518 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (⌊‘𝑥) ∈ ℤ)
2928peano2zd 12429 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℤ)
3029zred 12426 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℝ)
31 letr 11069 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3227, 24, 30, 31syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3326, 32mpan2d 691 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3410adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
3534nnzd 12425 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℤ)
36 eluz 12596 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℤ ∧ ((⌊‘𝑥) + 1) ∈ ℤ) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3735, 29, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
38 simpll 764 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝜑)
399adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
401, 15, 2vdwnnlem2 16697 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < ))) → (inf(𝑆, ℝ, < ) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ 𝑆))
4140impancom 452 . . . . . . . . . 10 ((𝜑 ∧ inf(𝑆, ℝ, < ) ∈ 𝑆) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4238, 39, 41syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4337, 42sylbird 259 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4433, 43syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ 𝑆))
453sseli 3917 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ)
4645nnnn0d 12293 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ0)
4744, 46syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
4847rexlimdva 3213 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
491adantr 481 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝑅 ∈ Fin)
5015adantr 481 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝐹:ℕ⟶𝑅)
51 simpr 485 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ((⌊‘𝑥) + 1) ∈ ℕ0)
52 vdwnnlem1 16696 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5349, 50, 51, 52syl3anc 1370 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5453ex 413 . . . . . 6 (𝜑 → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5554adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5623, 48, 553syld 60 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
57 oveq1 7282 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑥) + 1) → (𝑘 − 1) = (((⌊‘𝑥) + 1) − 1))
5857oveq2d 7291 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑥) + 1) → (0...(𝑘 − 1)) = (0...(((⌊‘𝑥) + 1) − 1)))
5958raleqdv 3348 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑥) + 1) → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
60592rexbidv 3229 . . . . . . . . . 10 (𝑘 = ((⌊‘𝑥) + 1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6160notbid 318 . . . . . . . . 9 (𝑘 = ((⌊‘𝑥) + 1) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6261, 2elrab2 3627 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 ↔ (((⌊‘𝑥) + 1) ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6362simprbi 497 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6444, 63syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6564ralimdva 3108 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
66 ralnex 3167 . . . . 5 (∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6765, 66syl6ib 250 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6856, 67pm2.65d 195 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
6968nrexdv 3198 . 2 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7014, 69pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-hash 14045  df-vdwap 16669  df-vdwmc 16670  df-vdwpc 16671
This theorem is referenced by:  vdwnn  16699
  Copyright terms: Public domain W3C validator