MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem3 Structured version   Visualization version   GIF version

Theorem vdwnnlem3 15994
Description: Lemma for vdwnn 15995. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
vdwnn.4 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
Assertion
Ref Expression
vdwnnlem3 ¬ 𝜑
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝑐   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwnn.1 . . 3 (𝜑𝑅 ∈ Fin)
2 vdwnn.3 . . . . . . 7 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3 ssrab2 3849 . . . . . . 7 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})} ⊆ ℕ
42, 3eqsstri 3797 . . . . . 6 𝑆 ⊆ ℕ
5 nnuz 11928 . . . . . . . 8 ℕ = (ℤ‘1)
64, 5sseqtri 3799 . . . . . . 7 𝑆 ⊆ (ℤ‘1)
7 vdwnn.4 . . . . . . . 8 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
87r19.21bi 3079 . . . . . . 7 ((𝜑𝑐𝑅) → 𝑆 ≠ ∅)
9 infssuzcl 11978 . . . . . . 7 ((𝑆 ⊆ (ℤ‘1) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
106, 8, 9sylancr 581 . . . . . 6 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
114, 10sseldi 3761 . . . . 5 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
1211nnred 11295 . . . 4 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
1312ralrimiva 3113 . . 3 (𝜑 → ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ)
14 fimaxre3 11228 . . 3 ((𝑅 ∈ Fin ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
151, 13, 14syl2anc 579 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
16 vdwnn.2 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑅)
17 1nn 11291 . . . . . . . . 9 1 ∈ ℕ
18 ffvelrn 6551 . . . . . . . . 9 ((𝐹:ℕ⟶𝑅 ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ 𝑅)
1916, 17, 18sylancl 580 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑅)
2019ne0d 4088 . . . . . . 7 (𝜑𝑅 ≠ ∅)
2120adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ ∅)
22 r19.2z 4221 . . . . . . 7 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
2322ex 401 . . . . . 6 (𝑅 ≠ ∅ → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
2421, 23syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
25 simplr 785 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ∈ ℝ)
26 fllep1 12815 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2725, 26syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ≤ ((⌊‘𝑥) + 1))
2812adantlr 706 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
2925flcld 12812 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (⌊‘𝑥) ∈ ℤ)
3029peano2zd 11737 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℤ)
3130zred 11734 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℝ)
32 letr 10389 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3328, 25, 31, 32syl3anc 1490 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3427, 33mpan2d 685 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3511adantlr 706 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
3635nnzd 11733 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℤ)
37 eluz 11905 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℤ ∧ ((⌊‘𝑥) + 1) ∈ ℤ) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3836, 30, 37syl2anc 579 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
39 simpll 783 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝜑)
4010adantlr 706 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
411, 16, 2vdwnnlem2 15993 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < ))) → (inf(𝑆, ℝ, < ) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ 𝑆))
4241impancom 443 . . . . . . . . . 10 ((𝜑 ∧ inf(𝑆, ℝ, < ) ∈ 𝑆) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4339, 40, 42syl2anc 579 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4438, 43sylbird 251 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4534, 44syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ 𝑆))
464sseli 3759 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ)
4746nnnn0d 11602 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ0)
4845, 47syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
4948rexlimdva 3178 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
501adantr 472 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝑅 ∈ Fin)
5116adantr 472 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝐹:ℕ⟶𝑅)
52 simpr 477 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ((⌊‘𝑥) + 1) ∈ ℕ0)
53 vdwnnlem1 15992 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5450, 51, 52, 53syl3anc 1490 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5554ex 401 . . . . . 6 (𝜑 → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5655adantr 472 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5724, 49, 563syld 60 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
58 oveq1 6853 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑥) + 1) → (𝑘 − 1) = (((⌊‘𝑥) + 1) − 1))
5958oveq2d 6862 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑥) + 1) → (0...(𝑘 − 1)) = (0...(((⌊‘𝑥) + 1) − 1)))
6059raleqdv 3292 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑥) + 1) → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
61602rexbidv 3204 . . . . . . . . . 10 (𝑘 = ((⌊‘𝑥) + 1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6261notbid 309 . . . . . . . . 9 (𝑘 = ((⌊‘𝑥) + 1) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6362, 2elrab2 3525 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 ↔ (((⌊‘𝑥) + 1) ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6463simprbi 490 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6545, 64syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6665ralimdva 3109 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
67 ralnex 3139 . . . . 5 (∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6866, 67syl6ib 242 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6957, 68pm2.65d 187 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7069nrexdv 3147 . 2 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7115, 70pm2.65i 185 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  wss 3734  c0 4081  {csn 4336   class class class wbr 4811  ccnv 5278  cima 5282  wf 6066  cfv 6070  (class class class)co 6846  Fincfn 8164  infcinf 8558  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198   < clt 10332  cle 10333  cmin 10524  cn 11278  0cn0 11542  cz 11628  cuz 11891  ...cfz 12538  cfl 12804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-n0 11543  df-xnn0 11615  df-z 11629  df-uz 11892  df-rp 12034  df-fz 12539  df-fl 12806  df-hash 13327  df-vdwap 15965  df-vdwmc 15966  df-vdwpc 15967
This theorem is referenced by:  vdwnn  15995
  Copyright terms: Public domain W3C validator