MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem3 Structured version   Visualization version   GIF version

Theorem vdwnnlem3 17035
Description: Lemma for vdwnn 17036. (Contributed by Mario Carneiro, 13-Sep-2014.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
vdwnn.4 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
Assertion
Ref Expression
vdwnnlem3 ¬ 𝜑
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝑐   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwnn.1 . . 3 (𝜑𝑅 ∈ Fin)
2 vdwnn.3 . . . . . . 7 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
32ssrab3 4082 . . . . . 6 𝑆 ⊆ ℕ
4 nnuz 12921 . . . . . . . 8 ℕ = (ℤ‘1)
53, 4sseqtri 4032 . . . . . . 7 𝑆 ⊆ (ℤ‘1)
6 vdwnn.4 . . . . . . . 8 (𝜑 → ∀𝑐𝑅 𝑆 ≠ ∅)
76r19.21bi 3251 . . . . . . 7 ((𝜑𝑐𝑅) → 𝑆 ≠ ∅)
8 infssuzcl 12974 . . . . . . 7 ((𝑆 ⊆ (ℤ‘1) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
95, 7, 8sylancr 587 . . . . . 6 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
103, 9sselid 3981 . . . . 5 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
1110nnred 12281 . . . 4 ((𝜑𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
1211ralrimiva 3146 . . 3 (𝜑 → ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ)
13 fimaxre3 12214 . . 3 ((𝑅 ∈ Fin ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
141, 12, 13syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
15 vdwnn.2 . . . . . . . . 9 (𝜑𝐹:ℕ⟶𝑅)
16 1nn 12277 . . . . . . . . 9 1 ∈ ℕ
17 ffvelcdm 7101 . . . . . . . . 9 ((𝐹:ℕ⟶𝑅 ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ 𝑅)
1815, 16, 17sylancl 586 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ 𝑅)
1918ne0d 4342 . . . . . . 7 (𝜑𝑅 ≠ ∅)
2019adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ ∅)
21 r19.2z 4495 . . . . . . 7 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥) → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
2221ex 412 . . . . . 6 (𝑅 ≠ ∅ → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
2320, 22syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥))
24 simplr 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ∈ ℝ)
25 fllep1 13841 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
2624, 25syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝑥 ≤ ((⌊‘𝑥) + 1))
2711adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℝ)
2824flcld 13838 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (⌊‘𝑥) ∈ ℤ)
2928peano2zd 12725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℤ)
3029zred 12722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((⌊‘𝑥) + 1) ∈ ℝ)
31 letr 11355 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3227, 24, 30, 31syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → ((inf(𝑆, ℝ, < ) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3326, 32mpan2d 694 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3410adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℕ)
3534nnzd 12640 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ ℤ)
36 eluz 12892 . . . . . . . . . 10 ((inf(𝑆, ℝ, < ) ∈ ℤ ∧ ((⌊‘𝑥) + 1) ∈ ℤ) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
3735, 29, 36syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) ↔ inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1)))
38 simpll 767 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → 𝜑)
399adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
401, 15, 2vdwnnlem2 17034 . . . . . . . . . . 11 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < ))) → (inf(𝑆, ℝ, < ) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ 𝑆))
4140impancom 451 . . . . . . . . . 10 ((𝜑 ∧ inf(𝑆, ℝ, < ) ∈ 𝑆) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4238, 39, 41syl2anc 584 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (((⌊‘𝑥) + 1) ∈ (ℤ‘inf(𝑆, ℝ, < )) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4337, 42sylbird 260 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ ((⌊‘𝑥) + 1) → ((⌊‘𝑥) + 1) ∈ 𝑆))
4433, 43syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ 𝑆))
453sseli 3979 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ)
4645nnnn0d 12587 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ((⌊‘𝑥) + 1) ∈ ℕ0)
4744, 46syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
4847rexlimdva 3155 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∃𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ((⌊‘𝑥) + 1) ∈ ℕ0))
491adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝑅 ∈ Fin)
5015adantr 480 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → 𝐹:ℕ⟶𝑅)
51 simpr 484 . . . . . . . 8 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ((⌊‘𝑥) + 1) ∈ ℕ0)
52 vdwnnlem1 17033 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5349, 50, 51, 52syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ((⌊‘𝑥) + 1) ∈ ℕ0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
5453ex 412 . . . . . 6 (𝜑 → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5554adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (((⌊‘𝑥) + 1) ∈ ℕ0 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
5623, 48, 553syld 60 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
57 oveq1 7438 . . . . . . . . . . . . 13 (𝑘 = ((⌊‘𝑥) + 1) → (𝑘 − 1) = (((⌊‘𝑥) + 1) − 1))
5857oveq2d 7447 . . . . . . . . . . . 12 (𝑘 = ((⌊‘𝑥) + 1) → (0...(𝑘 − 1)) = (0...(((⌊‘𝑥) + 1) − 1)))
5958raleqdv 3326 . . . . . . . . . . 11 (𝑘 = ((⌊‘𝑥) + 1) → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
60592rexbidv 3222 . . . . . . . . . 10 (𝑘 = ((⌊‘𝑥) + 1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6160notbid 318 . . . . . . . . 9 (𝑘 = ((⌊‘𝑥) + 1) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6261, 2elrab2 3695 . . . . . . . 8 (((⌊‘𝑥) + 1) ∈ 𝑆 ↔ (((⌊‘𝑥) + 1) ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6362simprbi 496 . . . . . . 7 (((⌊‘𝑥) + 1) ∈ 𝑆 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6444, 63syl6 35 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑐𝑅) → (inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6564ralimdva 3167 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
66 ralnex 3072 . . . . 5 (∀𝑐𝑅 ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6765, 66imbitrdi 251 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥 → ¬ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(((⌊‘𝑥) + 1) − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6856, 67pm2.65d 196 . . 3 ((𝜑𝑥 ∈ ℝ) → ¬ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
6968nrexdv 3149 . 2 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑐𝑅 inf(𝑆, ℝ, < ) ≤ 𝑥)
7014, 69pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  ccnv 5684  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  infcinf 9481  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-hash 14370  df-vdwap 17006  df-vdwmc 17007  df-vdwpc 17008
This theorem is referenced by:  vdwnn  17036
  Copyright terms: Public domain W3C validator