Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nmo | Structured version Visualization version GIF version |
Description: Negation of "at most one". (Contributed by Thierry Arnoux, 26-Feb-2017.) |
Ref | Expression |
---|---|
nmo.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
nmo | ⊢ (¬ ∃*𝑥𝜑 ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmo.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | mof 2563 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
3 | 2 | notbii 319 | . 2 ⊢ (¬ ∃*𝑥𝜑 ↔ ¬ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
4 | alnex 1785 | . 2 ⊢ (∀𝑦 ¬ ∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ¬ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
5 | exnal 1830 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 → 𝑥 = 𝑦) ↔ ¬ ∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
6 | pm4.61 404 | . . . . . 6 ⊢ (¬ (𝜑 → 𝑥 = 𝑦) ↔ (𝜑 ∧ ¬ 𝑥 = 𝑦)) | |
7 | biid 260 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 ↔ 𝑥 = 𝑦) | |
8 | 7 | necon3bbii 2990 | . . . . . . 7 ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
9 | 8 | anbi2i 622 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 = 𝑦) ↔ (𝜑 ∧ 𝑥 ≠ 𝑦)) |
10 | 6, 9 | bitri 274 | . . . . 5 ⊢ (¬ (𝜑 → 𝑥 = 𝑦) ↔ (𝜑 ∧ 𝑥 ≠ 𝑦)) |
11 | 10 | exbii 1851 | . . . 4 ⊢ (∃𝑥 ¬ (𝜑 → 𝑥 = 𝑦) ↔ ∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) |
12 | 5, 11 | bitr3i 276 | . . 3 ⊢ (¬ ∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) |
13 | 12 | albii 1823 | . 2 ⊢ (∀𝑦 ¬ ∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) |
14 | 3, 4, 13 | 3bitr2i 298 | 1 ⊢ (¬ ∃*𝑥𝜑 ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∃*wmo 2538 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-ne 2943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |