| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isf32lem.c | . . . . 5
⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | 
| 2 | 1 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | 
| 3 |  | isf32lem.a | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | 
| 4 | 3 | ffnd 6737 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn ω) | 
| 5 |  | peano2 7912 | . . . . . . . . 9
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) | 
| 6 |  | fnfvelrn 7100 | . . . . . . . . 9
⊢ ((𝐹 Fn ω ∧ suc 𝐴 ∈ ω) → (𝐹‘suc 𝐴) ∈ ran 𝐹) | 
| 7 | 4, 5, 6 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘suc 𝐴) ∈ ran 𝐹) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝐹‘suc 𝐴) ∈ ran 𝐹) | 
| 9 |  | intss1 4963 | . . . . . . 7
⊢ ((𝐹‘suc 𝐴) ∈ ran 𝐹 → ∩ ran
𝐹 ⊆ (𝐹‘suc 𝐴)) | 
| 10 | 8, 9 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∩ ran
𝐹 ⊆ (𝐹‘suc 𝐴)) | 
| 11 |  | fvelrnb 6969 | . . . . . . . . . . 11
⊢ (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏)) | 
| 12 | 4, 11 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏)) | 
| 13 | 12 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏)) | 
| 14 |  | simplrr 778 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → 𝑐 ∈ ω) | 
| 15 | 5 | ad3antlr 731 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → suc 𝐴 ∈ ω) | 
| 16 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → suc 𝐴 ⊆ 𝑐) | 
| 17 |  | simplrl 777 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) | 
| 18 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = suc 𝐴 → (𝐹‘𝑏) = (𝐹‘suc 𝐴)) | 
| 19 | 18 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = suc 𝐴 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴))) | 
| 20 | 19 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = suc 𝐴 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴)))) | 
| 21 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) | 
| 22 | 21 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑑 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘𝑑))) | 
| 23 | 22 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑑 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑑)))) | 
| 24 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = suc 𝑑 → (𝐹‘𝑏) = (𝐹‘suc 𝑑)) | 
| 25 | 24 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = suc 𝑑 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))) | 
| 26 | 25 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = suc 𝑑 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))) | 
| 27 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) | 
| 28 | 27 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘𝑐))) | 
| 29 | 28 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑐 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑐)))) | 
| 30 |  | eqid 2737 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴) | 
| 31 | 30 | 2a1i 12 | . . . . . . . . . . . . . . . . 17
⊢ (suc
𝐴 ∈ ω →
(∀𝑎 ∈ ω
(𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴))) | 
| 32 |  | elex 3501 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (suc
𝐴 ∈ ω → suc
𝐴 ∈
V) | 
| 33 |  | sucexb 7824 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | 
| 34 | 32, 33 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (suc
𝐴 ∈ ω →
𝐴 ∈
V) | 
| 35 | 34 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ V) | 
| 36 |  | sucssel 6479 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ V → (suc 𝐴 ⊆ 𝑑 → 𝐴 ∈ 𝑑)) | 
| 37 | 35, 36 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc
𝐴 ⊆ 𝑑 → 𝐴 ∈ 𝑑)) | 
| 38 | 37 | imp 406 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → 𝐴 ∈ 𝑑) | 
| 39 |  | eleq2w 2825 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑑 → (𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑑)) | 
| 40 |  | suceq 6450 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑑 → suc 𝑎 = suc 𝑑) | 
| 41 | 40 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑑 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑑)) | 
| 42 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑑 → (𝐹‘𝑎) = (𝐹‘𝑑)) | 
| 43 | 41, 42 | eqeq12d 2753 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑑 → ((𝐹‘suc 𝑎) = (𝐹‘𝑎) ↔ (𝐹‘suc 𝑑) = (𝐹‘𝑑))) | 
| 44 | 39, 43 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑑 → ((𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ↔ (𝐴 ∈ 𝑑 → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) | 
| 45 | 44 | rspcv 3618 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 ∈ ω →
(∀𝑎 ∈ ω
(𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑑 → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) | 
| 46 | 45 | com23 86 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 ∈ ω → (𝐴 ∈ 𝑑 → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) | 
| 47 | 46 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → (𝐴 ∈ 𝑑 → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) | 
| 48 | 38, 47 | mpd 15 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝑑) = (𝐹‘𝑑))) | 
| 49 |  | eqtr3 2763 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘suc 𝐴) = (𝐹‘𝑑) ∧ (𝐹‘suc 𝑑) = (𝐹‘𝑑)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)) | 
| 50 | 49 | expcom 413 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘suc 𝑑) = (𝐹‘𝑑) → ((𝐹‘suc 𝐴) = (𝐹‘𝑑) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))) | 
| 51 | 48, 50 | syl6 35 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → ((𝐹‘suc 𝐴) = (𝐹‘𝑑) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))) | 
| 52 | 51 | a2d 29 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑑)) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))) | 
| 53 | 20, 23, 26, 29, 31, 52 | findsg 7919 | . . . . . . . . . . . . . . . 16
⊢ (((𝑐 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑐) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑐))) | 
| 54 | 53 | impr 454 | . . . . . . . . . . . . . . 15
⊢ (((𝑐 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ (suc
𝐴 ⊆ 𝑐 ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)))) → (𝐹‘suc 𝐴) = (𝐹‘𝑐)) | 
| 55 | 14, 15, 16, 17, 54 | syl22anc 839 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → (𝐹‘suc 𝐴) = (𝐹‘𝑐)) | 
| 56 |  | eqimss 4042 | . . . . . . . . . . . . . 14
⊢ ((𝐹‘suc 𝐴) = (𝐹‘𝑐) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) | 
| 57 | 55, 56 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) | 
| 58 | 5 | ad3antlr 731 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → suc 𝐴 ∈ ω) | 
| 59 |  | simplrr 778 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝑐 ∈ ω) | 
| 60 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝑐 ⊆ suc 𝐴) | 
| 61 |  | simplll 775 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝜑) | 
| 62 |  | isf32lem.b | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | 
| 63 | 3, 62, 1 | isf32lem1 10393 | . . . . . . . . . . . . . 14
⊢ (((suc
𝐴 ∈ ω ∧
𝑐 ∈ ω) ∧
(𝑐 ⊆ suc 𝐴 ∧ 𝜑)) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) | 
| 64 | 58, 59, 60, 61, 63 | syl22anc 839 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) | 
| 65 |  | nnord 7895 | . . . . . . . . . . . . . . . 16
⊢ (suc
𝐴 ∈ ω → Ord
suc 𝐴) | 
| 66 | 5, 65 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ω → Ord suc
𝐴) | 
| 67 | 66 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → Ord suc 𝐴) | 
| 68 |  | nnord 7895 | . . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ω → Ord 𝑐) | 
| 69 | 68 | ad2antll 729 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → Ord 𝑐) | 
| 70 |  | ordtri2or2 6483 | . . . . . . . . . . . . . 14
⊢ ((Ord suc
𝐴 ∧ Ord 𝑐) → (suc 𝐴 ⊆ 𝑐 ∨ 𝑐 ⊆ suc 𝐴)) | 
| 71 | 67, 69, 70 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → (suc 𝐴 ⊆ 𝑐 ∨ 𝑐 ⊆ suc 𝐴)) | 
| 72 | 57, 64, 71 | mpjaodan 961 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) | 
| 73 | 72 | anassrs 467 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) ∧ 𝑐 ∈ ω) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) | 
| 74 |  | sseq2 4010 | . . . . . . . . . . 11
⊢ ((𝐹‘𝑐) = 𝑏 → ((𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐) ↔ (𝐹‘suc 𝐴) ⊆ 𝑏)) | 
| 75 | 73, 74 | syl5ibcom 245 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) ∧ 𝑐 ∈ ω) → ((𝐹‘𝑐) = 𝑏 → (𝐹‘suc 𝐴) ⊆ 𝑏)) | 
| 76 | 75 | rexlimdva 3155 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏 → (𝐹‘suc 𝐴) ⊆ 𝑏)) | 
| 77 | 13, 76 | sylbid 240 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝑏 ∈ ran 𝐹 → (𝐹‘suc 𝐴) ⊆ 𝑏)) | 
| 78 | 77 | ralrimiv 3145 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∀𝑏 ∈ ran 𝐹(𝐹‘suc 𝐴) ⊆ 𝑏) | 
| 79 |  | ssint 4964 | . . . . . . 7
⊢ ((𝐹‘suc 𝐴) ⊆ ∩ ran
𝐹 ↔ ∀𝑏 ∈ ran 𝐹(𝐹‘suc 𝐴) ⊆ 𝑏) | 
| 80 | 78, 79 | sylibr 234 | . . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝐹‘suc 𝐴) ⊆ ∩ ran
𝐹) | 
| 81 | 10, 80 | eqssd 4001 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∩ ran
𝐹 = (𝐹‘suc 𝐴)) | 
| 82 | 81, 8 | eqeltrd 2841 | . . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∩ ran
𝐹 ∈ ran 𝐹) | 
| 83 | 2, 82 | mtand 816 | . . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ¬ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) | 
| 84 |  | rexnal 3100 | . . 3
⊢
(∃𝑎 ∈
ω ¬ (𝐴 ∈
𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ↔ ¬ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) | 
| 85 | 83, 84 | sylibr 234 | . 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∃𝑎 ∈ ω ¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) | 
| 86 |  | suceq 6450 | . . . . . . . 8
⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | 
| 87 | 86 | fveq2d 6910 | . . . . . . 7
⊢ (𝑥 = 𝑎 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑎)) | 
| 88 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | 
| 89 | 87, 88 | sseq12d 4017 | . . . . . 6
⊢ (𝑥 = 𝑎 → ((𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ↔ (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎))) | 
| 90 | 89 | cbvralvw 3237 | . . . . 5
⊢
(∀𝑥 ∈
ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ↔ ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎)) | 
| 91 | 62, 90 | sylib 218 | . . . 4
⊢ (𝜑 → ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎)) | 
| 92 | 91 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎)) | 
| 93 |  | pm4.61 404 | . . . . 5
⊢ (¬
(𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ↔ (𝐴 ∈ 𝑎 ∧ ¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎))) | 
| 94 |  | dfpss2 4088 | . . . . . . 7
⊢ ((𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎) ↔ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) ∧ ¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎))) | 
| 95 | 94 | simplbi2 500 | . . . . . 6
⊢ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → (¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎) → (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) | 
| 96 | 95 | anim2d 612 | . . . . 5
⊢ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → ((𝐴 ∈ 𝑎 ∧ ¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) | 
| 97 | 93, 96 | biimtrid 242 | . . . 4
⊢ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → (¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) | 
| 98 | 97 | ralimi 3083 | . . 3
⊢
(∀𝑎 ∈
ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → ∀𝑎 ∈ ω (¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) | 
| 99 |  | rexim 3087 | . . 3
⊢
(∀𝑎 ∈
ω (¬ (𝐴 ∈
𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) → (∃𝑎 ∈ ω ¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) | 
| 100 | 92, 98, 99 | 3syl 18 | . 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (∃𝑎 ∈ ω ¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) | 
| 101 | 85, 100 | mpd 15 | 1
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) |