MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem2 Structured version   Visualization version   GIF version

Theorem isf32lem2 10290
Description: Lemma for isfin3-2 10303. Non-minimum implies that there is always another decrease. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem2 ((𝜑𝐴 ∈ ω) → ∃𝑎 ∈ ω (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎)))
Distinct variable groups:   𝑥,𝑎   𝐺,𝑎   𝜑,𝑎,𝑥   𝐴,𝑎,𝑥   𝐹,𝑎,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem2
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.c . . . . 5 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
21adantr 481 . . . 4 ((𝜑𝐴 ∈ ω) → ¬ ran 𝐹 ∈ ran 𝐹)
3 isf32lem.a . . . . . . . . . 10 (𝜑𝐹:ω⟶𝒫 𝐺)
43ffnd 6669 . . . . . . . . 9 (𝜑𝐹 Fn ω)
5 peano2 7827 . . . . . . . . 9 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
6 fnfvelrn 7031 . . . . . . . . 9 ((𝐹 Fn ω ∧ suc 𝐴 ∈ ω) → (𝐹‘suc 𝐴) ∈ ran 𝐹)
74, 5, 6syl2an 596 . . . . . . . 8 ((𝜑𝐴 ∈ ω) → (𝐹‘suc 𝐴) ∈ ran 𝐹)
87adantr 481 . . . . . . 7 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → (𝐹‘suc 𝐴) ∈ ran 𝐹)
9 intss1 4924 . . . . . . 7 ((𝐹‘suc 𝐴) ∈ ran 𝐹 ran 𝐹 ⊆ (𝐹‘suc 𝐴))
108, 9syl 17 . . . . . 6 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → ran 𝐹 ⊆ (𝐹‘suc 𝐴))
11 fvelrnb 6903 . . . . . . . . . . 11 (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹𝑐) = 𝑏))
124, 11syl 17 . . . . . . . . . 10 (𝜑 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹𝑐) = 𝑏))
1312ad2antrr 724 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹𝑐) = 𝑏))
14 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴𝑐) → 𝑐 ∈ ω)
155ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴𝑐) → suc 𝐴 ∈ ω)
16 simpr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴𝑐) → suc 𝐴𝑐)
17 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴𝑐) → ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)))
18 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑏 = suc 𝐴 → (𝐹𝑏) = (𝐹‘suc 𝐴))
1918eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (𝑏 = suc 𝐴 → ((𝐹‘suc 𝐴) = (𝐹𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴)))
2019imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑏 = suc 𝐴 → ((∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑏)) ↔ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴))))
21 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
2221eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑑 → ((𝐹‘suc 𝐴) = (𝐹𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹𝑑)))
2322imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑑 → ((∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑏)) ↔ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑑))))
24 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑏 = suc 𝑑 → (𝐹𝑏) = (𝐹‘suc 𝑑))
2524eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (𝑏 = suc 𝑑 → ((𝐹‘suc 𝐴) = (𝐹𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))
2625imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑏 = suc 𝑑 → ((∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑏)) ↔ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))))
27 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑐 → (𝐹𝑏) = (𝐹𝑐))
2827eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑐 → ((𝐹‘suc 𝐴) = (𝐹𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹𝑐)))
2928imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → ((∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑏)) ↔ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑐))))
30 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴)
31302a1i 12 . . . . . . . . . . . . . . . . 17 (suc 𝐴 ∈ ω → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴)))
32 elex 3463 . . . . . . . . . . . . . . . . . . . . . . . 24 (suc 𝐴 ∈ ω → suc 𝐴 ∈ V)
33 sucexb 7739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
3432, 33sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (suc 𝐴 ∈ ω → 𝐴 ∈ V)
3534adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ V)
36 sucssel 6412 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ V → (suc 𝐴𝑑𝐴𝑑))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc 𝐴𝑑𝐴𝑑))
3837imp 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑑) → 𝐴𝑑)
39 eleq2w 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑑 → (𝐴𝑎𝐴𝑑))
40 suceq 6383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑑 → suc 𝑎 = suc 𝑑)
4140fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑑 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑑))
42 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑑 → (𝐹𝑎) = (𝐹𝑑))
4341, 42eqeq12d 2752 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑑 → ((𝐹‘suc 𝑎) = (𝐹𝑎) ↔ (𝐹‘suc 𝑑) = (𝐹𝑑)))
4439, 43imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑑 → ((𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ↔ (𝐴𝑑 → (𝐹‘suc 𝑑) = (𝐹𝑑))))
4544rspcv 3577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ ω → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐴𝑑 → (𝐹‘suc 𝑑) = (𝐹𝑑))))
4645com23 86 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ ω → (𝐴𝑑 → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝑑) = (𝐹𝑑))))
4746ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑑) → (𝐴𝑑 → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝑑) = (𝐹𝑑))))
4838, 47mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑑) → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝑑) = (𝐹𝑑)))
49 eqtr3 2762 . . . . . . . . . . . . . . . . . . . 20 (((𝐹‘suc 𝐴) = (𝐹𝑑) ∧ (𝐹‘suc 𝑑) = (𝐹𝑑)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))
5049expcom 414 . . . . . . . . . . . . . . . . . . 19 ((𝐹‘suc 𝑑) = (𝐹𝑑) → ((𝐹‘suc 𝐴) = (𝐹𝑑) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))
5148, 50syl6 35 . . . . . . . . . . . . . . . . . 18 (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑑) → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → ((𝐹‘suc 𝐴) = (𝐹𝑑) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))))
5251a2d 29 . . . . . . . . . . . . . . . . 17 (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑑) → ((∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑑)) → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))))
5320, 23, 26, 29, 31, 52findsg 7836 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑐) → (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐹‘suc 𝐴) = (𝐹𝑐)))
5453impr 455 . . . . . . . . . . . . . . 15 (((𝑐 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ (suc 𝐴𝑐 ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)))) → (𝐹‘suc 𝐴) = (𝐹𝑐))
5514, 15, 16, 17, 54syl22anc 837 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴𝑐) → (𝐹‘suc 𝐴) = (𝐹𝑐))
56 eqimss 4000 . . . . . . . . . . . . . 14 ((𝐹‘suc 𝐴) = (𝐹𝑐) → (𝐹‘suc 𝐴) ⊆ (𝐹𝑐))
5755, 56syl 17 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴𝑐) → (𝐹‘suc 𝐴) ⊆ (𝐹𝑐))
585ad3antlr 729 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → suc 𝐴 ∈ ω)
59 simplrr 776 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝑐 ∈ ω)
60 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝑐 ⊆ suc 𝐴)
61 simplll 773 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝜑)
62 isf32lem.b . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
633, 62, 1isf32lem1 10289 . . . . . . . . . . . . . 14 (((suc 𝐴 ∈ ω ∧ 𝑐 ∈ ω) ∧ (𝑐 ⊆ suc 𝐴𝜑)) → (𝐹‘suc 𝐴) ⊆ (𝐹𝑐))
6458, 59, 60, 61, 63syl22anc 837 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → (𝐹‘suc 𝐴) ⊆ (𝐹𝑐))
65 nnord 7810 . . . . . . . . . . . . . . . 16 (suc 𝐴 ∈ ω → Ord suc 𝐴)
665, 65syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → Ord suc 𝐴)
6766ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) → Ord suc 𝐴)
68 nnord 7810 . . . . . . . . . . . . . . 15 (𝑐 ∈ ω → Ord 𝑐)
6968ad2antll 727 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) → Ord 𝑐)
70 ordtri2or2 6416 . . . . . . . . . . . . . 14 ((Ord suc 𝐴 ∧ Ord 𝑐) → (suc 𝐴𝑐𝑐 ⊆ suc 𝐴))
7167, 69, 70syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) → (suc 𝐴𝑐𝑐 ⊆ suc 𝐴))
7257, 64, 71mpjaodan 957 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ∧ 𝑐 ∈ ω)) → (𝐹‘suc 𝐴) ⊆ (𝐹𝑐))
7372anassrs 468 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) ∧ 𝑐 ∈ ω) → (𝐹‘suc 𝐴) ⊆ (𝐹𝑐))
74 sseq2 3970 . . . . . . . . . . 11 ((𝐹𝑐) = 𝑏 → ((𝐹‘suc 𝐴) ⊆ (𝐹𝑐) ↔ (𝐹‘suc 𝐴) ⊆ 𝑏))
7573, 74syl5ibcom 244 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) ∧ 𝑐 ∈ ω) → ((𝐹𝑐) = 𝑏 → (𝐹‘suc 𝐴) ⊆ 𝑏))
7675rexlimdva 3152 . . . . . . . . 9 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → (∃𝑐 ∈ ω (𝐹𝑐) = 𝑏 → (𝐹‘suc 𝐴) ⊆ 𝑏))
7713, 76sylbid 239 . . . . . . . 8 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → (𝑏 ∈ ran 𝐹 → (𝐹‘suc 𝐴) ⊆ 𝑏))
7877ralrimiv 3142 . . . . . . 7 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → ∀𝑏 ∈ ran 𝐹(𝐹‘suc 𝐴) ⊆ 𝑏)
79 ssint 4925 . . . . . . 7 ((𝐹‘suc 𝐴) ⊆ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹(𝐹‘suc 𝐴) ⊆ 𝑏)
8078, 79sylibr 233 . . . . . 6 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → (𝐹‘suc 𝐴) ⊆ ran 𝐹)
8110, 80eqssd 3961 . . . . 5 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → ran 𝐹 = (𝐹‘suc 𝐴))
8281, 8eqeltrd 2838 . . . 4 (((𝜑𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎))) → ran 𝐹 ∈ ran 𝐹)
832, 82mtand 814 . . 3 ((𝜑𝐴 ∈ ω) → ¬ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)))
84 rexnal 3103 . . 3 (∃𝑎 ∈ ω ¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ↔ ¬ ∀𝑎 ∈ ω (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)))
8583, 84sylibr 233 . 2 ((𝜑𝐴 ∈ ω) → ∃𝑎 ∈ ω ¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)))
86 suceq 6383 . . . . . . . 8 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
8786fveq2d 6846 . . . . . . 7 (𝑥 = 𝑎 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑎))
88 fveq2 6842 . . . . . . 7 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
8987, 88sseq12d 3977 . . . . . 6 (𝑥 = 𝑎 → ((𝐹‘suc 𝑥) ⊆ (𝐹𝑥) ↔ (𝐹‘suc 𝑎) ⊆ (𝐹𝑎)))
9089cbvralvw 3225 . . . . 5 (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥) ↔ ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹𝑎))
9162, 90sylib 217 . . . 4 (𝜑 → ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹𝑎))
9291adantr 481 . . 3 ((𝜑𝐴 ∈ ω) → ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹𝑎))
93 pm4.61 405 . . . . 5 (¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) ↔ (𝐴𝑎 ∧ ¬ (𝐹‘suc 𝑎) = (𝐹𝑎)))
94 dfpss2 4045 . . . . . . 7 ((𝐹‘suc 𝑎) ⊊ (𝐹𝑎) ↔ ((𝐹‘suc 𝑎) ⊆ (𝐹𝑎) ∧ ¬ (𝐹‘suc 𝑎) = (𝐹𝑎)))
9594simplbi2 501 . . . . . 6 ((𝐹‘suc 𝑎) ⊆ (𝐹𝑎) → (¬ (𝐹‘suc 𝑎) = (𝐹𝑎) → (𝐹‘suc 𝑎) ⊊ (𝐹𝑎)))
9695anim2d 612 . . . . 5 ((𝐹‘suc 𝑎) ⊆ (𝐹𝑎) → ((𝐴𝑎 ∧ ¬ (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎))))
9793, 96biimtrid 241 . . . 4 ((𝐹‘suc 𝑎) ⊆ (𝐹𝑎) → (¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎))))
9897ralimi 3086 . . 3 (∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹𝑎) → ∀𝑎 ∈ ω (¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎))))
99 rexim 3090 . . 3 (∀𝑎 ∈ ω (¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎))) → (∃𝑎 ∈ ω ¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → ∃𝑎 ∈ ω (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎))))
10092, 98, 993syl 18 . 2 ((𝜑𝐴 ∈ ω) → (∃𝑎 ∈ ω ¬ (𝐴𝑎 → (𝐹‘suc 𝑎) = (𝐹𝑎)) → ∃𝑎 ∈ ω (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎))))
10185, 100mpd 15 1 ((𝜑𝐴 ∈ ω) → ∃𝑎 ∈ ω (𝐴𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910  wpss 3911  𝒫 cpw 4560   cint 4907  ran crn 5634  Ord word 6316  suc csuc 6319   Fn wfn 6491  wf 6492  cfv 6496  ωcom 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-om 7803
This theorem is referenced by:  isf32lem5  10293
  Copyright terms: Public domain W3C validator