Step | Hyp | Ref
| Expression |
1 | | isf32lem.c |
. . . . 5
⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
3 | | isf32lem.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
4 | 3 | ffnd 6585 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn ω) |
5 | | peano2 7711 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |
6 | | fnfvelrn 6940 |
. . . . . . . . 9
⊢ ((𝐹 Fn ω ∧ suc 𝐴 ∈ ω) → (𝐹‘suc 𝐴) ∈ ran 𝐹) |
7 | 4, 5, 6 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐹‘suc 𝐴) ∈ ran 𝐹) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝐹‘suc 𝐴) ∈ ran 𝐹) |
9 | | intss1 4891 |
. . . . . . 7
⊢ ((𝐹‘suc 𝐴) ∈ ran 𝐹 → ∩ ran
𝐹 ⊆ (𝐹‘suc 𝐴)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∩ ran
𝐹 ⊆ (𝐹‘suc 𝐴)) |
11 | | fvelrnb 6812 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ω → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏)) |
12 | 4, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏)) |
13 | 12 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝑏 ∈ ran 𝐹 ↔ ∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏)) |
14 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → 𝑐 ∈ ω) |
15 | 5 | ad3antlr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → suc 𝐴 ∈ ω) |
16 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → suc 𝐴 ⊆ 𝑐) |
17 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = suc 𝐴 → (𝐹‘𝑏) = (𝐹‘suc 𝐴)) |
19 | 18 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = suc 𝐴 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴))) |
20 | 19 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = suc 𝐴 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴)))) |
21 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) |
22 | 21 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑑 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘𝑑))) |
23 | 22 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑑 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑑)))) |
24 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = suc 𝑑 → (𝐹‘𝑏) = (𝐹‘suc 𝑑)) |
25 | 24 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = suc 𝑑 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))) |
26 | 25 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = suc 𝑑 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))) |
27 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑐 → (𝐹‘𝑏) = (𝐹‘𝑐)) |
28 | 27 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑐 → ((𝐹‘suc 𝐴) = (𝐹‘𝑏) ↔ (𝐹‘suc 𝐴) = (𝐹‘𝑐))) |
29 | 28 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑐 → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑏)) ↔ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑐)))) |
30 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴) |
31 | 30 | 2a1i 12 |
. . . . . . . . . . . . . . . . 17
⊢ (suc
𝐴 ∈ ω →
(∀𝑎 ∈ ω
(𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝐴))) |
32 | | elex 3440 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (suc
𝐴 ∈ ω → suc
𝐴 ∈
V) |
33 | | sucexb 7631 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
34 | 32, 33 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (suc
𝐴 ∈ ω →
𝐴 ∈
V) |
35 | 34 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ V) |
36 | | sucssel 6343 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ V → (suc 𝐴 ⊆ 𝑑 → 𝐴 ∈ 𝑑)) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc
𝐴 ⊆ 𝑑 → 𝐴 ∈ 𝑑)) |
38 | 37 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → 𝐴 ∈ 𝑑) |
39 | | eleq2w 2822 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑑 → (𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑑)) |
40 | | suceq 6316 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑑 → suc 𝑎 = suc 𝑑) |
41 | 40 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑑 → (𝐹‘suc 𝑎) = (𝐹‘suc 𝑑)) |
42 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑑 → (𝐹‘𝑎) = (𝐹‘𝑑)) |
43 | 41, 42 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑑 → ((𝐹‘suc 𝑎) = (𝐹‘𝑎) ↔ (𝐹‘suc 𝑑) = (𝐹‘𝑑))) |
44 | 39, 43 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑑 → ((𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ↔ (𝐴 ∈ 𝑑 → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) |
45 | 44 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 ∈ ω →
(∀𝑎 ∈ ω
(𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑑 → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) |
46 | 45 | com23 86 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 ∈ ω → (𝐴 ∈ 𝑑 → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) |
47 | 46 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → (𝐴 ∈ 𝑑 → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝑑) = (𝐹‘𝑑)))) |
48 | 38, 47 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝑑) = (𝐹‘𝑑))) |
49 | | eqtr3 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘suc 𝐴) = (𝐹‘𝑑) ∧ (𝐹‘suc 𝑑) = (𝐹‘𝑑)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)) |
50 | 49 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘suc 𝑑) = (𝐹‘𝑑) → ((𝐹‘suc 𝐴) = (𝐹‘𝑑) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑))) |
51 | 48, 50 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → ((𝐹‘suc 𝐴) = (𝐹‘𝑑) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))) |
52 | 51 | a2d 29 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑑 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑑) → ((∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑑)) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘suc 𝑑)))) |
53 | 20, 23, 26, 29, 31, 52 | findsg 7720 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴 ⊆ 𝑐) → (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐹‘suc 𝐴) = (𝐹‘𝑐))) |
54 | 53 | impr 454 |
. . . . . . . . . . . . . . 15
⊢ (((𝑐 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ (suc
𝐴 ⊆ 𝑐 ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)))) → (𝐹‘suc 𝐴) = (𝐹‘𝑐)) |
55 | 14, 15, 16, 17, 54 | syl22anc 835 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → (𝐹‘suc 𝐴) = (𝐹‘𝑐)) |
56 | | eqimss 3973 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘suc 𝐴) = (𝐹‘𝑐) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ suc 𝐴 ⊆ 𝑐) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) |
58 | 5 | ad3antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → suc 𝐴 ∈ ω) |
59 | | simplrr 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝑐 ∈ ω) |
60 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝑐 ⊆ suc 𝐴) |
61 | | simplll 771 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → 𝜑) |
62 | | isf32lem.b |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
63 | 3, 62, 1 | isf32lem1 10040 |
. . . . . . . . . . . . . 14
⊢ (((suc
𝐴 ∈ ω ∧
𝑐 ∈ ω) ∧
(𝑐 ⊆ suc 𝐴 ∧ 𝜑)) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) |
64 | 58, 59, 60, 61, 63 | syl22anc 835 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) ∧ 𝑐 ⊆ suc 𝐴) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) |
65 | | nnord 7695 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝐴 ∈ ω → Ord
suc 𝐴) |
66 | 5, 65 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ω → Ord suc
𝐴) |
67 | 66 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → Ord suc 𝐴) |
68 | | nnord 7695 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ω → Ord 𝑐) |
69 | 68 | ad2antll 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → Ord 𝑐) |
70 | | ordtri2or2 6347 |
. . . . . . . . . . . . . 14
⊢ ((Ord suc
𝐴 ∧ Ord 𝑐) → (suc 𝐴 ⊆ 𝑐 ∨ 𝑐 ⊆ suc 𝐴)) |
71 | 67, 69, 70 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → (suc 𝐴 ⊆ 𝑐 ∨ 𝑐 ⊆ suc 𝐴)) |
72 | 57, 64, 71 | mpjaodan 955 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ (∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ∧ 𝑐 ∈ ω)) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) |
73 | 72 | anassrs 467 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) ∧ 𝑐 ∈ ω) → (𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐)) |
74 | | sseq2 3943 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑐) = 𝑏 → ((𝐹‘suc 𝐴) ⊆ (𝐹‘𝑐) ↔ (𝐹‘suc 𝐴) ⊆ 𝑏)) |
75 | 73, 74 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) ∧ 𝑐 ∈ ω) → ((𝐹‘𝑐) = 𝑏 → (𝐹‘suc 𝐴) ⊆ 𝑏)) |
76 | 75 | rexlimdva 3212 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (∃𝑐 ∈ ω (𝐹‘𝑐) = 𝑏 → (𝐹‘suc 𝐴) ⊆ 𝑏)) |
77 | 13, 76 | sylbid 239 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝑏 ∈ ran 𝐹 → (𝐹‘suc 𝐴) ⊆ 𝑏)) |
78 | 77 | ralrimiv 3106 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∀𝑏 ∈ ran 𝐹(𝐹‘suc 𝐴) ⊆ 𝑏) |
79 | | ssint 4892 |
. . . . . . 7
⊢ ((𝐹‘suc 𝐴) ⊆ ∩ ran
𝐹 ↔ ∀𝑏 ∈ ran 𝐹(𝐹‘suc 𝐴) ⊆ 𝑏) |
80 | 78, 79 | sylibr 233 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → (𝐹‘suc 𝐴) ⊆ ∩ ran
𝐹) |
81 | 10, 80 | eqssd 3934 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∩ ran
𝐹 = (𝐹‘suc 𝐴)) |
82 | 81, 8 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ω) ∧ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) → ∩ ran
𝐹 ∈ ran 𝐹) |
83 | 2, 82 | mtand 812 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ¬ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) |
84 | | rexnal 3165 |
. . 3
⊢
(∃𝑎 ∈
ω ¬ (𝐴 ∈
𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ↔ ¬ ∀𝑎 ∈ ω (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) |
85 | 83, 84 | sylibr 233 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∃𝑎 ∈ ω ¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎))) |
86 | | suceq 6316 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) |
87 | 86 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑎)) |
88 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) |
89 | 87, 88 | sseq12d 3950 |
. . . . . 6
⊢ (𝑥 = 𝑎 → ((𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ↔ (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎))) |
90 | 89 | cbvralvw 3372 |
. . . . 5
⊢
(∀𝑥 ∈
ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ↔ ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎)) |
91 | 62, 90 | sylib 217 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎)) |
92 | 91 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∀𝑎 ∈ ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎)) |
93 | | pm4.61 404 |
. . . . 5
⊢ (¬
(𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) ↔ (𝐴 ∈ 𝑎 ∧ ¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎))) |
94 | | dfpss2 4016 |
. . . . . . 7
⊢ ((𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎) ↔ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) ∧ ¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎))) |
95 | 94 | simplbi2 500 |
. . . . . 6
⊢ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → (¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎) → (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) |
96 | 95 | anim2d 611 |
. . . . 5
⊢ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → ((𝐴 ∈ 𝑎 ∧ ¬ (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) |
97 | 93, 96 | syl5bi 241 |
. . . 4
⊢ ((𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → (¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) |
98 | 97 | ralimi 3086 |
. . 3
⊢
(∀𝑎 ∈
ω (𝐹‘suc 𝑎) ⊆ (𝐹‘𝑎) → ∀𝑎 ∈ ω (¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) |
99 | | rexim 3168 |
. . 3
⊢
(∀𝑎 ∈
ω (¬ (𝐴 ∈
𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) → (∃𝑎 ∈ ω ¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) |
100 | 92, 98, 99 | 3syl 18 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (∃𝑎 ∈ ω ¬ (𝐴 ∈ 𝑎 → (𝐹‘suc 𝑎) = (𝐹‘𝑎)) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎)))) |
101 | 85, 100 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) |