Step | Hyp | Ref
| Expression |
1 | | domnsym 8839 |
. . . 4
⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
2 | | fphpd.a |
. . . 4
⊢ (𝜑 → 𝐵 ≺ 𝐴) |
3 | 1, 2 | nsyl3 138 |
. . 3
⊢ (𝜑 → ¬ 𝐴 ≼ 𝐵) |
4 | | relsdom 8698 |
. . . . . . 7
⊢ Rel
≺ |
5 | 4 | brrelex1i 5634 |
. . . . . 6
⊢ (𝐵 ≺ 𝐴 → 𝐵 ∈ V) |
6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → 𝐵 ∈ V) |
8 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ 𝐴) |
9 | | nfcsb1v 3853 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 |
10 | 9 | nfel1 2922 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵 |
11 | 8, 10 | nfim 1900 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵) |
12 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
13 | 12 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑎 ∈ 𝐴))) |
14 | | csbeq1a 3842 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
15 | 14 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐶 ∈ 𝐵 ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) |
16 | 13, 15 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵))) |
17 | | fphpd.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
18 | 11, 16, 17 | chvarfv 2236 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵) |
19 | 18 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) |
20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (𝑎 ∈ 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) |
21 | | csbid 3841 |
. . . . . . . . . . 11
⊢
⦋𝑥 /
𝑥⦌𝐶 = 𝐶 |
22 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
23 | | fphpd.c |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
24 | 22, 23 | csbie 3864 |
. . . . . . . . . . 11
⊢
⦋𝑦 /
𝑥⦌𝐶 = 𝐷 |
25 | 21, 24 | eqeq12i 2756 |
. . . . . . . . . 10
⊢
(⦋𝑥 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ 𝐶 = 𝐷) |
26 | 25 | imbi1i 349 |
. . . . . . . . 9
⊢
((⦋𝑥 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
27 | 26 | 2ralbii 3091 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
28 | | nfcsb1v 3853 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
29 | 9, 28 | nfeq 2919 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 |
30 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑎 = 𝑦 |
31 | 29, 30 | nfim 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦) |
32 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) |
33 | | csbeq1 3831 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
34 | 33 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶)) |
35 | | equequ1 2029 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) |
36 | 34, 35 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦))) |
37 | | csbeq1 3831 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
38 | 37 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶)) |
39 | | equequ2 2030 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) |
40 | 38, 39 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → ((⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦) ↔ (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
41 | 31, 32, 36, 40 | rspc2 3560 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
42 | 41 | com12 32 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
43 | 27, 42 | sylbir 234 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
44 | | id 22 |
. . . . . . . 8
⊢
((⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏)) |
45 | | csbeq1 3831 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
46 | 44, 45 | impbid1 224 |
. . . . . . 7
⊢
((⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏)) |
47 | 43, 46 | syl6 35 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏))) |
48 | 47 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏))) |
49 | 20, 48 | dom2d 8736 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (𝐵 ∈ V → 𝐴 ≼ 𝐵)) |
50 | 7, 49 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → 𝐴 ≼ 𝐵) |
51 | 3, 50 | mtand 812 |
. 2
⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
52 | | ancom 460 |
. . . . . . 7
⊢ ((¬
𝑥 = 𝑦 ∧ 𝐶 = 𝐷) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦)) |
53 | | df-ne 2943 |
. . . . . . . 8
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
54 | 53 | anbi1i 623 |
. . . . . . 7
⊢ ((𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ (¬ 𝑥 = 𝑦 ∧ 𝐶 = 𝐷)) |
55 | | pm4.61 404 |
. . . . . . 7
⊢ (¬
(𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦)) |
56 | 52, 54, 55 | 3bitr4i 302 |
. . . . . 6
⊢ ((𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
57 | 56 | rexbii 3177 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ∃𝑦 ∈ 𝐴 ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
58 | | rexnal 3165 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
59 | 57, 58 | bitri 274 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
60 | 59 | rexbii 3177 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
61 | | rexnal 3165 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
62 | 60, 61 | bitri 274 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
63 | 51, 62 | sylibr 233 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) |