| Step | Hyp | Ref
| Expression |
| 1 | | domnsym 9076 |
. . . 4
⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
| 2 | | fphpd.a |
. . . 4
⊢ (𝜑 → 𝐵 ≺ 𝐴) |
| 3 | 1, 2 | nsyl3 138 |
. . 3
⊢ (𝜑 → ¬ 𝐴 ≼ 𝐵) |
| 4 | | relsdom 8929 |
. . . . . . 7
⊢ Rel
≺ |
| 5 | 4 | brrelex1i 5702 |
. . . . . 6
⊢ (𝐵 ≺ 𝐴 → 𝐵 ∈ V) |
| 6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → 𝐵 ∈ V) |
| 8 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ 𝐴) |
| 9 | | nfcsb1v 3894 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 |
| 10 | 9 | nfel1 2910 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵 |
| 11 | 8, 10 | nfim 1896 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵) |
| 12 | | eleq1w 2812 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
| 13 | 12 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑎 ∈ 𝐴))) |
| 14 | | csbeq1a 3884 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
| 15 | 14 | eleq1d 2814 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐶 ∈ 𝐵 ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) |
| 16 | 13, 15 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵))) |
| 17 | | fphpd.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 18 | 11, 16, 17 | chvarfv 2241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵) |
| 19 | 18 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (𝑎 ∈ 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) |
| 21 | | csbid 3883 |
. . . . . . . . . . 11
⊢
⦋𝑥 /
𝑥⦌𝐶 = 𝐶 |
| 22 | | vex 3459 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 23 | | fphpd.c |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| 24 | 22, 23 | csbie 3905 |
. . . . . . . . . . 11
⊢
⦋𝑦 /
𝑥⦌𝐶 = 𝐷 |
| 25 | 21, 24 | eqeq12i 2748 |
. . . . . . . . . 10
⊢
(⦋𝑥 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ 𝐶 = 𝐷) |
| 26 | 25 | imbi1i 349 |
. . . . . . . . 9
⊢
((⦋𝑥 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 27 | 26 | 2ralbii 3110 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 28 | | nfcsb1v 3894 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
| 29 | 9, 28 | nfeq 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 |
| 30 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑎 = 𝑦 |
| 31 | 29, 30 | nfim 1896 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦) |
| 32 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) |
| 33 | | csbeq1 3873 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
| 34 | 33 | eqeq1d 2732 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶)) |
| 35 | | equequ1 2025 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) |
| 36 | 34, 35 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦))) |
| 37 | | csbeq1 3873 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
| 38 | 37 | eqeq2d 2741 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶)) |
| 39 | | equequ2 2026 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) |
| 40 | 38, 39 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → ((⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦) ↔ (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
| 41 | 31, 32, 36, 40 | rspc2 3606 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
| 42 | 41 | com12 32 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
| 43 | 27, 42 | sylbir 235 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) |
| 44 | | id 22 |
. . . . . . . 8
⊢
((⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏)) |
| 45 | | csbeq1 3873 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) |
| 46 | 44, 45 | impbid1 225 |
. . . . . . 7
⊢
((⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏)) |
| 47 | 43, 46 | syl6 35 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏))) |
| 48 | 47 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏))) |
| 49 | 20, 48 | dom2d 8970 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (𝐵 ∈ V → 𝐴 ≼ 𝐵)) |
| 50 | 7, 49 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → 𝐴 ≼ 𝐵) |
| 51 | 3, 50 | mtand 815 |
. 2
⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 52 | | ancom 460 |
. . . . . . 7
⊢ ((¬
𝑥 = 𝑦 ∧ 𝐶 = 𝐷) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦)) |
| 53 | | df-ne 2928 |
. . . . . . . 8
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
| 54 | 53 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ (¬ 𝑥 = 𝑦 ∧ 𝐶 = 𝐷)) |
| 55 | | pm4.61 404 |
. . . . . . 7
⊢ (¬
(𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦)) |
| 56 | 52, 54, 55 | 3bitr4i 303 |
. . . . . 6
⊢ ((𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 57 | 56 | rexbii 3078 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ∃𝑦 ∈ 𝐴 ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 58 | | rexnal 3084 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 59 | 57, 58 | bitri 275 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 60 | 59 | rexbii 3078 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 61 | | rexnal 3084 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 62 | 60, 61 | bitri 275 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 63 | 51, 62 | sylibr 234 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) |