| Step | Hyp | Ref
 | Expression | 
| 1 |   | domnsym 9120 | 
. . . 4
⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | 
| 2 |   | fphpd.a | 
. . . 4
⊢ (𝜑 → 𝐵 ≺ 𝐴) | 
| 3 | 1, 2 | nsyl3 138 | 
. . 3
⊢ (𝜑 → ¬ 𝐴 ≼ 𝐵) | 
| 4 |   | relsdom 8973 | 
. . . . . . 7
⊢ Rel
≺ | 
| 5 | 4 | brrelex1i 5721 | 
. . . . . 6
⊢ (𝐵 ≺ 𝐴 → 𝐵 ∈ V) | 
| 6 | 2, 5 | syl 17 | 
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) | 
| 7 | 6 | adantr 480 | 
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → 𝐵 ∈ V) | 
| 8 |   | nfv 1913 | 
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ 𝐴) | 
| 9 |   | nfcsb1v 3903 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 | 
| 10 | 9 | nfel1 2914 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵 | 
| 11 | 8, 10 | nfim 1895 | 
. . . . . . . 8
⊢
Ⅎ𝑥((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵) | 
| 12 |   | eleq1w 2816 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) | 
| 13 | 12 | anbi2d 630 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑎 ∈ 𝐴))) | 
| 14 |   | csbeq1a 3893 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | 
| 15 | 14 | eleq1d 2818 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐶 ∈ 𝐵 ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) | 
| 16 | 13, 15 | imbi12d 344 | 
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵))) | 
| 17 |   | fphpd.b | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| 18 | 11, 16, 17 | chvarfv 2239 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵) | 
| 19 | 18 | ex 412 | 
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) | 
| 20 | 19 | adantr 480 | 
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (𝑎 ∈ 𝐴 → ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝐵)) | 
| 21 |   | csbid 3892 | 
. . . . . . . . . . 11
⊢
⦋𝑥 /
𝑥⦌𝐶 = 𝐶 | 
| 22 |   | vex 3467 | 
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V | 
| 23 |   | fphpd.c | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | 
| 24 | 22, 23 | csbie 3914 | 
. . . . . . . . . . 11
⊢
⦋𝑦 /
𝑥⦌𝐶 = 𝐷 | 
| 25 | 21, 24 | eqeq12i 2752 | 
. . . . . . . . . 10
⊢
(⦋𝑥 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ 𝐶 = 𝐷) | 
| 26 | 25 | imbi1i 349 | 
. . . . . . . . 9
⊢
((⦋𝑥 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 27 | 26 | 2ralbii 3115 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 28 |   | nfcsb1v 3903 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | 
| 29 | 9, 28 | nfeq 2911 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 | 
| 30 |   | nfv 1913 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑎 = 𝑦 | 
| 31 | 29, 30 | nfim 1895 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥(⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦) | 
| 32 |   | nfv 1913 | 
. . . . . . . . . 10
⊢
Ⅎ𝑦(⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) | 
| 33 |   | csbeq1 3882 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌𝐶) | 
| 34 | 33 | eqeq1d 2736 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶)) | 
| 35 |   | equequ1 2023 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑥 = 𝑦 ↔ 𝑎 = 𝑦)) | 
| 36 | 34, 35 | imbi12d 344 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) ↔ (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦))) | 
| 37 |   | csbeq1 3882 | 
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) | 
| 38 | 37 | eqeq2d 2745 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶)) | 
| 39 |   | equequ2 2024 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → (𝑎 = 𝑦 ↔ 𝑎 = 𝑏)) | 
| 40 | 38, 39 | imbi12d 344 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → ((⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑎 = 𝑦) ↔ (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) | 
| 41 | 31, 32, 36, 40 | rspc2 3614 | 
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) | 
| 42 | 41 | com12 32 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (⦋𝑥 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑥⦌𝐶 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) | 
| 43 | 27, 42 | sylbir 235 | 
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏))) | 
| 44 |   | id 22 | 
. . . . . . . 8
⊢
((⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏)) | 
| 45 |   | csbeq1 3882 | 
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶) | 
| 46 | 44, 45 | impbid1 225 | 
. . . . . . 7
⊢
((⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 → 𝑎 = 𝑏) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏)) | 
| 47 | 43, 46 | syl6 35 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏))) | 
| 48 | 47 | adantl 481 | 
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑥⦌𝐶 ↔ 𝑎 = 𝑏))) | 
| 49 | 20, 48 | dom2d 9014 | 
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → (𝐵 ∈ V → 𝐴 ≼ 𝐵)) | 
| 50 | 7, 49 | mpd 15 | 
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) → 𝐴 ≼ 𝐵) | 
| 51 | 3, 50 | mtand 815 | 
. 2
⊢ (𝜑 → ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 52 |   | ancom 460 | 
. . . . . . 7
⊢ ((¬
𝑥 = 𝑦 ∧ 𝐶 = 𝐷) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦)) | 
| 53 |   | df-ne 2932 | 
. . . . . . . 8
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | 
| 54 | 53 | anbi1i 624 | 
. . . . . . 7
⊢ ((𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ (¬ 𝑥 = 𝑦 ∧ 𝐶 = 𝐷)) | 
| 55 |   | pm4.61 404 | 
. . . . . . 7
⊢ (¬
(𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦)) | 
| 56 | 52, 54, 55 | 3bitr4i 303 | 
. . . . . 6
⊢ ((𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 57 | 56 | rexbii 3082 | 
. . . . 5
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ∃𝑦 ∈ 𝐴 ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 58 |   | rexnal 3088 | 
. . . . 5
⊢
(∃𝑦 ∈
𝐴 ¬ (𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 59 | 57, 58 | bitri 275 | 
. . . 4
⊢
(∃𝑦 ∈
𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 60 | 59 | rexbii 3082 | 
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 61 |   | rexnal 3088 | 
. . 3
⊢
(∃𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 62 | 60, 61 | bitri 275 | 
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝐶 = 𝐷 → 𝑥 = 𝑦)) | 
| 63 | 51, 62 | sylibr 234 | 
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) |