Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Structured version   Visualization version   GIF version

Theorem fphpd 40633
Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a (𝜑𝐵𝐴)
fphpd.b ((𝜑𝑥𝐴) → 𝐶𝐵)
fphpd.c (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
fphpd (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem fphpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 8866 . . . 4 (𝐴𝐵 → ¬ 𝐵𝐴)
2 fphpd.a . . . 4 (𝜑𝐵𝐴)
31, 2nsyl3 138 . . 3 (𝜑 → ¬ 𝐴𝐵)
4 relsdom 8721 . . . . . . 7 Rel ≺
54brrelex1i 5643 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
62, 5syl 17 . . . . 5 (𝜑𝐵 ∈ V)
76adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → 𝐵 ∈ V)
8 nfv 1921 . . . . . . . . 9 𝑥(𝜑𝑎𝐴)
9 nfcsb1v 3862 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐶
109nfel1 2925 . . . . . . . . 9 𝑥𝑎 / 𝑥𝐶𝐵
118, 10nfim 1903 . . . . . . . 8 𝑥((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)
12 eleq1w 2823 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
1312anbi2d 629 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝜑𝑥𝐴) ↔ (𝜑𝑎𝐴)))
14 csbeq1a 3851 . . . . . . . . . 10 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
1514eleq1d 2825 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐶𝐵𝑎 / 𝑥𝐶𝐵))
1613, 15imbi12d 345 . . . . . . . 8 (𝑥 = 𝑎 → (((𝜑𝑥𝐴) → 𝐶𝐵) ↔ ((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)))
17 fphpd.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝐵)
1811, 16, 17chvarfv 2237 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)
1918ex 413 . . . . . 6 (𝜑 → (𝑎𝐴𝑎 / 𝑥𝐶𝐵))
2019adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (𝑎𝐴𝑎 / 𝑥𝐶𝐵))
21 csbid 3850 . . . . . . . . . . 11 𝑥 / 𝑥𝐶 = 𝐶
22 vex 3435 . . . . . . . . . . . 12 𝑦 ∈ V
23 fphpd.c . . . . . . . . . . . 12 (𝑥 = 𝑦𝐶 = 𝐷)
2422, 23csbie 3873 . . . . . . . . . . 11 𝑦 / 𝑥𝐶 = 𝐷
2521, 24eqeq12i 2758 . . . . . . . . . 10 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝐶 = 𝐷)
2625imbi1i 350 . . . . . . . . 9 ((𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))
27262ralbii 3094 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
28 nfcsb1v 3862 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐶
299, 28nfeq 2922 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶
30 nfv 1921 . . . . . . . . . . 11 𝑥 𝑎 = 𝑦
3129, 30nfim 1903 . . . . . . . . . 10 𝑥(𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦)
32 nfv 1921 . . . . . . . . . 10 𝑦(𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)
33 csbeq1 3840 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 / 𝑥𝐶 = 𝑎 / 𝑥𝐶)
3433eqeq1d 2742 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶))
35 equequ1 2032 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3634, 35imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ (𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦)))
37 csbeq1 3840 . . . . . . . . . . . 12 (𝑦 = 𝑏𝑦 / 𝑥𝐶 = 𝑏 / 𝑥𝐶)
3837eqeq2d 2751 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶))
39 equequ2 2033 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
4038, 39imbi12d 345 . . . . . . . . . 10 (𝑦 = 𝑏 → ((𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦) ↔ (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4131, 32, 36, 40rspc2 3569 . . . . . . . . 9 ((𝑎𝐴𝑏𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4241com12 32 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4327, 42sylbir 234 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
44 id 22 . . . . . . . 8 ((𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏))
45 csbeq1 3840 . . . . . . . 8 (𝑎 = 𝑏𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶)
4644, 45impbid1 224 . . . . . . 7 ((𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏))
4743, 46syl6 35 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4847adantl 482 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4920, 48dom2d 8762 . . . 4 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (𝐵 ∈ V → 𝐴𝐵))
507, 49mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → 𝐴𝐵)
513, 50mtand 813 . 2 (𝜑 → ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
52 ancom 461 . . . . . . 7 ((¬ 𝑥 = 𝑦𝐶 = 𝐷) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦))
53 df-ne 2946 . . . . . . . 8 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
5453anbi1i 624 . . . . . . 7 ((𝑥𝑦𝐶 = 𝐷) ↔ (¬ 𝑥 = 𝑦𝐶 = 𝐷))
55 pm4.61 405 . . . . . . 7 (¬ (𝐶 = 𝐷𝑥 = 𝑦) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦))
5652, 54, 553bitr4i 303 . . . . . 6 ((𝑥𝑦𝐶 = 𝐷) ↔ ¬ (𝐶 = 𝐷𝑥 = 𝑦))
5756rexbii 3180 . . . . 5 (∃𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ∃𝑦𝐴 ¬ (𝐶 = 𝐷𝑥 = 𝑦))
58 rexnal 3168 . . . . 5 (∃𝑦𝐴 ¬ (𝐶 = 𝐷𝑥 = 𝑦) ↔ ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
5957, 58bitri 274 . . . 4 (∃𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6059rexbii 3180 . . 3 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
61 rexnal 3168 . . 3 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6260, 61bitri 274 . 2 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6351, 62sylibr 233 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  Vcvv 3431  csb 3837   class class class wbr 5079  cdom 8712  csdm 8713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717
This theorem is referenced by:  fphpdo  40634  pellex  40652
  Copyright terms: Public domain W3C validator