Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps Structured version   Visualization version   GIF version

Theorem islindeps 45682
Description: The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps.b 𝐵 = (Base‘𝑀)
islindeps.z 𝑍 = (0g𝑀)
islindeps.r 𝑅 = (Scalar‘𝑀)
islindeps.e 𝐸 = (Base‘𝑅)
islindeps.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑊(𝑥,𝑓)   0 (𝑥,𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem islindeps
StepHypRef Expression
1 lindepsnlininds 45681 . . 3 ((𝑆 ∈ 𝒫 𝐵𝑀𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
21ancoms 458 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
3 islindeps.b . . . . . 6 𝐵 = (Base‘𝑀)
4 islindeps.z . . . . . 6 𝑍 = (0g𝑀)
5 islindeps.r . . . . . 6 𝑅 = (Scalar‘𝑀)
6 islindeps.e . . . . . 6 𝐸 = (Base‘𝑅)
7 islindeps.0 . . . . . 6 0 = (0g𝑅)
83, 4, 5, 6, 7islininds 45675 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
98ancoms 458 . . . 4 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
10 ibar 528 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
1110bicomd 222 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1211adantl 481 . . . 4 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
139, 12bitrd 278 . . 3 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1413notbid 317 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (¬ 𝑆 linIndS 𝑀 ↔ ¬ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
15 rexnal 3165 . . . 4 (∃𝑓 ∈ (𝐸m 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ¬ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
16 df-ne 2943 . . . . . . . . 9 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0 )
1716rexbii 3177 . . . . . . . 8 (∃𝑥𝑆 (𝑓𝑥) ≠ 0 ↔ ∃𝑥𝑆 ¬ (𝑓𝑥) = 0 )
18 rexnal 3165 . . . . . . . 8 (∃𝑥𝑆 ¬ (𝑓𝑥) = 0 ↔ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 )
1917, 18bitr2i 275 . . . . . . 7 (¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )
2019anbi2i 622 . . . . . 6 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
21 pm4.61 404 . . . . . 6 (¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ))
22 df-3an 1087 . . . . . 6 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2320, 21, 223bitr4i 302 . . . . 5 (¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2423rexbii 3177 . . . 4 (∃𝑓 ∈ (𝐸m 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2515, 24bitr3i 276 . . 3 (¬ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2625a1i 11 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (¬ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
272, 14, 263bitrd 304 1 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  𝒫 cpw 4530   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891  0gc0g 17067   linC clinc 45633   linIndS clininds 45669   linDepS clindeps 45670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-iota 6376  df-fv 6426  df-ov 7258  df-lininds 45671  df-lindeps 45673
This theorem is referenced by:  el0ldep  45695  ldepspr  45702  islindeps2  45712  isldepslvec2  45714  zlmodzxzldep  45733
  Copyright terms: Public domain W3C validator