Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps Structured version   Visualization version   GIF version

Theorem islindeps 43942
Description: The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps.b 𝐵 = (Base‘𝑀)
islindeps.z 𝑍 = (0g𝑀)
islindeps.r 𝑅 = (Scalar‘𝑀)
islindeps.e 𝐸 = (Base‘𝑅)
islindeps.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑊(𝑥,𝑓)   0 (𝑥,𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem islindeps
StepHypRef Expression
1 lindepsnlininds 43941 . . 3 ((𝑆 ∈ 𝒫 𝐵𝑀𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
21ancoms 459 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
3 islindeps.b . . . . . 6 𝐵 = (Base‘𝑀)
4 islindeps.z . . . . . 6 𝑍 = (0g𝑀)
5 islindeps.r . . . . . 6 𝑅 = (Scalar‘𝑀)
6 islindeps.e . . . . . 6 𝐸 = (Base‘𝑅)
7 islindeps.0 . . . . . 6 0 = (0g𝑅)
83, 4, 5, 6, 7islininds 43935 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
98ancoms 459 . . . 4 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
10 ibar 529 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
1110bicomd 224 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1211adantl 482 . . . 4 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
139, 12bitrd 280 . . 3 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
1413notbid 319 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (¬ 𝑆 linIndS 𝑀 ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
15 rexnal 3200 . . . 4 (∃𝑓 ∈ (𝐸𝑚 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
16 df-ne 2983 . . . . . . . . 9 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0 )
1716rexbii 3209 . . . . . . . 8 (∃𝑥𝑆 (𝑓𝑥) ≠ 0 ↔ ∃𝑥𝑆 ¬ (𝑓𝑥) = 0 )
18 rexnal 3200 . . . . . . . 8 (∃𝑥𝑆 ¬ (𝑓𝑥) = 0 ↔ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 )
1917, 18bitr2i 277 . . . . . . 7 (¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )
2019anbi2i 622 . . . . . 6 (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
21 pm4.61 405 . . . . . 6 (¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥𝑆 (𝑓𝑥) = 0 ))
22 df-3an 1080 . . . . . 6 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2320, 21, 223bitr4i 304 . . . . 5 (¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2423rexbii 3209 . . . 4 (∃𝑓 ∈ (𝐸𝑚 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2515, 24bitr3i 278 . . 3 (¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 ))
2625a1i 11 . 2 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (¬ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
272, 14, 263bitrd 306 1 ((𝑀𝑊𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸𝑚 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wral 3103  wrex 3104  𝒫 cpw 4447   class class class wbr 4956  cfv 6217  (class class class)co 7007  𝑚 cmap 8247   finSupp cfsupp 8669  Basecbs 16300  Scalarcsca 16385  0gc0g 16530   linC clinc 43893   linIndS clininds 43929   linDepS clindeps 43930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-iota 6181  df-fv 6225  df-ov 7010  df-lininds 43931  df-lindeps 43933
This theorem is referenced by:  el0ldep  43955  ldepspr  43962  islindeps2  43972  isldepslvec2  43974  zlmodzxzldep  43993
  Copyright terms: Public domain W3C validator