Proof of Theorem islindeps
| Step | Hyp | Ref
| Expression |
| 1 | | lindepsnlininds 48369 |
. . 3
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
| 2 | 1 | ancoms 458 |
. 2
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) |
| 3 | | islindeps.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑀) |
| 4 | | islindeps.z |
. . . . . 6
⊢ 𝑍 = (0g‘𝑀) |
| 5 | | islindeps.r |
. . . . . 6
⊢ 𝑅 = (Scalar‘𝑀) |
| 6 | | islindeps.e |
. . . . . 6
⊢ 𝐸 = (Base‘𝑅) |
| 7 | | islindeps.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 8 | 3, 4, 5, 6, 7 | islininds 48363 |
. . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 9 | 8 | ancoms 458 |
. . . 4
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 10 | | ibar 528 |
. . . . . 6
⊢ (𝑆 ∈ 𝒫 𝐵 → (∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
| 11 | 10 | bicomd 223 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 12 | 11 | adantl 481 |
. . . 4
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 13 | 9, 12 | bitrd 279 |
. . 3
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 14 | 13 | notbid 318 |
. 2
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (¬ 𝑆 linIndS 𝑀 ↔ ¬ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
| 15 | | rexnal 3100 |
. . . 4
⊢
(∃𝑓 ∈
(𝐸 ↑m 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ¬
∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
| 16 | | df-ne 2941 |
. . . . . . . . 9
⊢ ((𝑓‘𝑥) ≠ 0 ↔ ¬ (𝑓‘𝑥) = 0 ) |
| 17 | 16 | rexbii 3094 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝑆 (𝑓‘𝑥) ≠ 0 ↔ ∃𝑥 ∈ 𝑆 ¬ (𝑓‘𝑥) = 0 ) |
| 18 | | rexnal 3100 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝑆 ¬ (𝑓‘𝑥) = 0 ↔ ¬ ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) |
| 19 | 17, 18 | bitr2i 276 |
. . . . . . 7
⊢ (¬
∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ↔ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ) |
| 20 | 19 | anbi2i 623 |
. . . . . 6
⊢ (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 )) |
| 21 | | pm4.61 404 |
. . . . . 6
⊢ (¬
((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ¬ ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
| 22 | | df-3an 1089 |
. . . . . 6
⊢ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 )) |
| 23 | 20, 21, 22 | 3bitr4i 303 |
. . . . 5
⊢ (¬
((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 )) |
| 24 | 23 | rexbii 3094 |
. . . 4
⊢
(∃𝑓 ∈
(𝐸 ↑m 𝑆) ¬ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 )) |
| 25 | 15, 24 | bitr3i 277 |
. . 3
⊢ (¬
∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 )) |
| 26 | 25 | a1i 11 |
. 2
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (¬ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ))) |
| 27 | 2, 14, 26 | 3bitrd 305 |
1
⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ))) |