Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pr1nebg | Structured version Visualization version GIF version |
Description: A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
pr1nebg | ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pr1eqbg 4792 | . 2 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶})) | |
2 | 1 | necon3bid 2989 | 1 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 ≠ wne 2944 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-un 3896 df-sn 4567 df-pr 4569 |
This theorem is referenced by: usgr2pthlem 28110 |
Copyright terms: Public domain | W3C validator |