| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pr1nebg | Structured version Visualization version GIF version | ||
| Description: A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| Ref | Expression |
|---|---|
| pr1nebg | ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pr1eqbg 4837 | . 2 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶})) | |
| 2 | 1 | necon3bid 2975 | 1 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2931 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: usgr2pthlem 29711 |
| Copyright terms: Public domain | W3C validator |