MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr1nebg Structured version   Visualization version   GIF version

Theorem pr1nebg 4882
Description: A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
pr1nebg (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶}))

Proof of Theorem pr1nebg
StepHypRef Expression
1 pr1eqbg 4881 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶}))
21necon3bid 2991 1 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  usgr2pthlem  29799
  Copyright terms: Public domain W3C validator