Proof of Theorem preqsnd
| Step | Hyp | Ref
| Expression |
| 1 | | preqsnd.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | 1 | adantl 481 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝜑) → 𝐴 ∈ 𝑉) |
| 3 | | preqsnd.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 4 | 3 | adantl 481 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝜑) → 𝐵 ∈ 𝑊) |
| 5 | | simpl 482 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝜑) → 𝐶 ∈ V) |
| 6 | | dfsn2 4639 |
. . . . 5
⊢ {𝐶} = {𝐶, 𝐶} |
| 7 | 6 | eqeq2i 2750 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
| 8 | | preq12bg 4853 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)))) |
| 9 | | oridm 905 |
. . . . 5
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
| 10 | 8, 9 | bitrdi 287 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 11 | 7, 10 | bitrid 283 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 12 | 2, 4, 5, 5, 11 | syl22anc 839 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 13 | | snprc 4717 |
. . . . . . 7
⊢ (¬
𝐶 ∈ V ↔ {𝐶} = ∅) |
| 14 | 13 | biimpi 216 |
. . . . . 6
⊢ (¬
𝐶 ∈ V → {𝐶} = ∅) |
| 15 | 14 | adantr 480 |
. . . . 5
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → {𝐶} = ∅) |
| 16 | 15 | eqeq2d 2748 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = ∅)) |
| 17 | | prnzg 4778 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| 18 | | eqneqall 2951 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = ∅ → ({𝐴, 𝐵} ≠ ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 19 | 17, 18 | syl5com 31 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ({𝐴, 𝐵} = ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 20 | 1, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → ({𝐴, 𝐵} = ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 21 | 20 | adantl 481 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 22 | 16, 21 | sylbid 240 |
. . 3
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 23 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐴 → (𝐶 ∈ V ↔ 𝐴 ∈ V)) |
| 24 | 23 | eqcoms 2745 |
. . . . . . . . 9
⊢ (𝐴 = 𝐶 → (𝐶 ∈ V ↔ 𝐴 ∈ V)) |
| 25 | 24 | notbid 318 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → (¬ 𝐶 ∈ V ↔ ¬ 𝐴 ∈ V)) |
| 26 | | pm2.24 124 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ V → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶}))) |
| 27 | | elex 3501 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 28 | 26, 27 | syl11 33 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ V → (𝐴 ∈ 𝑉 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶}))) |
| 29 | 25, 28 | biimtrdi 253 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → (¬ 𝐶 ∈ V → (𝐴 ∈ 𝑉 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶})))) |
| 30 | 29 | com13 88 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (¬ 𝐶 ∈ V → (𝐴 = 𝐶 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶})))) |
| 31 | 1, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → (¬ 𝐶 ∈ V → (𝐴 = 𝐶 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶})))) |
| 32 | 31 | impcom 407 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → (𝐴 = 𝐶 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶}))) |
| 33 | 32 | impd 410 |
. . 3
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶})) |
| 34 | 22, 33 | impbid 212 |
. 2
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
| 35 | 12, 34 | pm2.61ian 812 |
1
⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |