Proof of Theorem preqsnd
Step | Hyp | Ref
| Expression |
1 | | preqsnd.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | 1 | adantl 482 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝜑) → 𝐴 ∈ 𝑉) |
3 | | preqsnd.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
4 | 3 | adantl 482 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝜑) → 𝐵 ∈ 𝑊) |
5 | | simpl 483 |
. . 3
⊢ ((𝐶 ∈ V ∧ 𝜑) → 𝐶 ∈ V) |
6 | | dfsn2 4574 |
. . . . 5
⊢ {𝐶} = {𝐶, 𝐶} |
7 | 6 | eqeq2i 2751 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
8 | | preq12bg 4784 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)))) |
9 | | oridm 902 |
. . . . 5
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
10 | 8, 9 | bitrdi 287 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
11 | 7, 10 | bitrid 282 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
12 | 2, 4, 5, 5, 11 | syl22anc 836 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
13 | | snprc 4653 |
. . . . . . 7
⊢ (¬
𝐶 ∈ V ↔ {𝐶} = ∅) |
14 | 13 | biimpi 215 |
. . . . . 6
⊢ (¬
𝐶 ∈ V → {𝐶} = ∅) |
15 | 14 | adantr 481 |
. . . . 5
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → {𝐶} = ∅) |
16 | 15 | eqeq2d 2749 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = ∅)) |
17 | | prnzg 4714 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
18 | | eqneqall 2954 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = ∅ → ({𝐴, 𝐵} ≠ ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
19 | 17, 18 | syl5com 31 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ({𝐴, 𝐵} = ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
20 | 1, 19 | syl 17 |
. . . . 5
⊢ (𝜑 → ({𝐴, 𝐵} = ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
21 | 20 | adantl 482 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = ∅ → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
22 | 16, 21 | sylbid 239 |
. . 3
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
23 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐴 → (𝐶 ∈ V ↔ 𝐴 ∈ V)) |
24 | 23 | eqcoms 2746 |
. . . . . . . . 9
⊢ (𝐴 = 𝐶 → (𝐶 ∈ V ↔ 𝐴 ∈ V)) |
25 | 24 | notbid 318 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → (¬ 𝐶 ∈ V ↔ ¬ 𝐴 ∈ V)) |
26 | | pm2.24 124 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ V → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶}))) |
27 | | elex 3450 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
28 | 26, 27 | syl11 33 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ V → (𝐴 ∈ 𝑉 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶}))) |
29 | 25, 28 | syl6bi 252 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → (¬ 𝐶 ∈ V → (𝐴 ∈ 𝑉 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶})))) |
30 | 29 | com13 88 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (¬ 𝐶 ∈ V → (𝐴 = 𝐶 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶})))) |
31 | 1, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → (¬ 𝐶 ∈ V → (𝐴 = 𝐶 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶})))) |
32 | 31 | impcom 408 |
. . . 4
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → (𝐴 = 𝐶 → (𝐵 = 𝐶 → {𝐴, 𝐵} = {𝐶}))) |
33 | 32 | impd 411 |
. . 3
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶})) |
34 | 22, 33 | impbid 211 |
. 2
⊢ ((¬
𝐶 ∈ V ∧ 𝜑) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
35 | 12, 34 | pm2.61ian 809 |
1
⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |