MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr1eqbg Structured version   Visualization version   GIF version

Theorem pr1eqbg 4784
Description: A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
pr1eqbg (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶}))

Proof of Theorem pr1eqbg
StepHypRef Expression
1 eqid 2738 . . . . 5 𝐵 = 𝐵
21biantru 529 . . . 4 (𝐴 = 𝐶 ↔ (𝐴 = 𝐶𝐵 = 𝐵))
32orbi2i 909 . . 3 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶) ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)))
43a1i 11 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶) ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
5 neneq 2948 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
65adantl 481 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
76intnanrd 489 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ¬ (𝐴 = 𝐵𝐵 = 𝐶))
8 biorf 933 . . 3 (¬ (𝐴 = 𝐵𝐵 = 𝐶) → (𝐴 = 𝐶 ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶)))
97, 8syl 17 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶)))
10 3simpa 1146 . . . . 5 ((𝐴𝑈𝐵𝑉𝐶𝑋) → (𝐴𝑈𝐵𝑉))
11 3simpc 1148 . . . . 5 ((𝐴𝑈𝐵𝑉𝐶𝑋) → (𝐵𝑉𝐶𝑋))
1210, 11jca 511 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝑋) → ((𝐴𝑈𝐵𝑉) ∧ (𝐵𝑉𝐶𝑋)))
1312adantr 480 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ((𝐴𝑈𝐵𝑉) ∧ (𝐵𝑉𝐶𝑋)))
14 preq12bg 4781 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐵𝑉𝐶𝑋)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
1513, 14syl 17 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
164, 9, 153bitr4d 310 1 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by:  pr1nebg  4785
  Copyright terms: Public domain W3C validator