MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr1eqbg Structured version   Visualization version   GIF version

Theorem pr1eqbg 4862
Description: A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
pr1eqbg (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶}))

Proof of Theorem pr1eqbg
StepHypRef Expression
1 eqid 2735 . . . . 5 𝐵 = 𝐵
21biantru 529 . . . 4 (𝐴 = 𝐶 ↔ (𝐴 = 𝐶𝐵 = 𝐵))
32orbi2i 912 . . 3 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶) ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)))
43a1i 11 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶) ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
5 neneq 2944 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
65adantl 481 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ¬ 𝐴 = 𝐵)
76intnanrd 489 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ¬ (𝐴 = 𝐵𝐵 = 𝐶))
8 biorf 936 . . 3 (¬ (𝐴 = 𝐵𝐵 = 𝐶) → (𝐴 = 𝐶 ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶)))
97, 8syl 17 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ 𝐴 = 𝐶)))
10 3simpa 1147 . . . . 5 ((𝐴𝑈𝐵𝑉𝐶𝑋) → (𝐴𝑈𝐵𝑉))
11 3simpc 1149 . . . . 5 ((𝐴𝑈𝐵𝑉𝐶𝑋) → (𝐵𝑉𝐶𝑋))
1210, 11jca 511 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝑋) → ((𝐴𝑈𝐵𝑉) ∧ (𝐵𝑉𝐶𝑋)))
1312adantr 480 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ((𝐴𝑈𝐵𝑉) ∧ (𝐵𝑉𝐶𝑋)))
14 preq12bg 4858 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐵𝑉𝐶𝑋)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
1513, 14syl 17 . 2 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
164, 9, 153bitr4d 311 1 (((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-un 3968  df-sn 4632  df-pr 4634
This theorem is referenced by:  pr1nebg  4863
  Copyright terms: Public domain W3C validator