MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predasetex Structured version   Visualization version   GIF version

Theorem predasetex 6156
Description: The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
predasetex.1 𝐴 ∈ V
Assertion
Ref Expression
predasetex Pred(𝑅, 𝐴, 𝑋) ∈ V

Proof of Theorem predasetex
StepHypRef Expression
1 df-pred 6141 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 predasetex.1 . . 3 𝐴 ∈ V
32inex1 5212 . 2 (𝐴 ∩ (𝑅 “ {𝑋})) ∈ V
41, 3eqeltri 2907 1 Pred(𝑅, 𝐴, 𝑋) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3493  cin 3933  {csn 4559  ccnv 5547  cima 5551  Predcpred 6140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-v 3495  df-in 3941  df-pred 6141
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator