Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredg Structured version   Visualization version   GIF version

Theorem elpredg 5997
 Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.)
Assertion
Ref Expression
elpredg ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))

Proof of Theorem elpredg
StepHypRef Expression
1 df-pred 5983 . . . . 5 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4056 . . . 4 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
32baib 528 . . 3 (𝑌𝐴 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌 ∈ (𝑅 “ {𝑋})))
43adantl 474 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌 ∈ (𝑅 “ {𝑋})))
5 elimasng 5792 . . 3 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑅))
6 df-br 4926 . . 3 (𝑋𝑅𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑅)
75, 6syl6bbr 281 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑋𝑅𝑌))
8 brcnvg 5596 . 2 ((𝑋𝐵𝑌𝐴) → (𝑋𝑅𝑌𝑌𝑅𝑋))
94, 7, 83bitrd 297 1 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387   ∈ wcel 2050  {csn 4435  ⟨cop 4441   class class class wbr 4925  ◡ccnv 5402   “ cima 5406  Predcpred 5982 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pr 5182 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926  df-opab 4988  df-xp 5409  df-cnv 5411  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983 This theorem is referenced by:  predpo  6001  predpoirr  6011  predfrirr  6012  wfrlem10  7766  wsuclem  32662  wsuclb  32665
 Copyright terms: Public domain W3C validator