![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpredg | Structured version Visualization version GIF version |
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elpredg | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg 6306 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
2 | ibar 528 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑌𝑅𝑋 ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
3 | 2 | bicomd 222 | . . 3 ⊢ (𝑌 ∈ 𝐴 → ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋)) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋)) |
5 | 1, 4 | bitrd 279 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 class class class wbr 5141 Predcpred 6292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 |
This theorem is referenced by: predpoirr 6327 predfrirr 6328 wfrlem10OLD 8316 wsuclem 35330 wsuclb 35333 |
Copyright terms: Public domain | W3C validator |