MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredg Structured version   Visualization version   GIF version

Theorem elpredg 6140
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.)
Assertion
Ref Expression
elpredg ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))

Proof of Theorem elpredg
StepHypRef Expression
1 df-pred 6126 . . . . 5 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4148 . . . 4 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
32baib 539 . . 3 (𝑌𝐴 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌 ∈ (𝑅 “ {𝑋})))
43adantl 485 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌 ∈ (𝑅 “ {𝑋})))
5 elimasng 5933 . . 3 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑅))
6 df-br 5043 . . 3 (𝑋𝑅𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑅)
75, 6syl6bbr 292 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑋𝑅𝑌))
8 brcnvg 5727 . 2 ((𝑋𝐵𝑌𝐴) → (𝑋𝑅𝑌𝑌𝑅𝑋))
94, 7, 83bitrd 308 1 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2114  {csn 4539  cop 4545   class class class wbr 5042  ccnv 5531  cima 5535  Predcpred 6125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-xp 5538  df-cnv 5540  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126
This theorem is referenced by:  predpo  6144  predpoirr  6154  predfrirr  6155  wfrlem10  7951  wsuclem  33186  wsuclb  33189
  Copyright terms: Public domain W3C validator