| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpredg | Structured version Visualization version GIF version | ||
| Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| elpredg | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpredgg 6334 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
| 2 | ibar 528 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑌𝑅𝑋 ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
| 3 | 2 | bicomd 223 | . . 3 ⊢ (𝑌 ∈ 𝐴 → ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋)) |
| 5 | 1, 4 | bitrd 279 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5143 Predcpred 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 |
| This theorem is referenced by: predpoirr 6354 predfrirr 6355 wfrlem10OLD 8358 wsuclem 35826 wsuclb 35829 |
| Copyright terms: Public domain | W3C validator |