MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredg Structured version   Visualization version   GIF version

Theorem elpredg 6322
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredg ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))

Proof of Theorem elpredg
StepHypRef Expression
1 elpredgg 6321 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 ibar 527 . . . 4 (𝑌𝐴 → (𝑌𝑅𝑋 ↔ (𝑌𝐴𝑌𝑅𝑋)))
32bicomd 222 . . 3 (𝑌𝐴 → ((𝑌𝐴𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋))
43adantl 480 . 2 ((𝑋𝐵𝑌𝐴) → ((𝑌𝐴𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋))
51, 4bitrd 278 1 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098   class class class wbr 5150  Predcpred 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-xp 5686  df-cnv 5688  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308
This theorem is referenced by:  predpoirr  6342  predfrirr  6343  wfrlem10OLD  8343  wsuclem  35426  wsuclb  35429
  Copyright terms: Public domain W3C validator