MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredg Structured version   Visualization version   GIF version

Theorem elpredg 6216
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredg ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))

Proof of Theorem elpredg
StepHypRef Expression
1 elpredgg 6215 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 ibar 529 . . . 4 (𝑌𝐴 → (𝑌𝑅𝑋 ↔ (𝑌𝐴𝑌𝑅𝑋)))
32bicomd 222 . . 3 (𝑌𝐴 → ((𝑌𝐴𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋))
43adantl 482 . 2 ((𝑋𝐵𝑌𝐴) → ((𝑌𝐴𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋))
51, 4bitrd 278 1 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  predpoirr  6236  predfrirr  6237  wfrlem10OLD  8149  wsuclem  33819  wsuclb  33822
  Copyright terms: Public domain W3C validator