MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpredg Structured version   Visualization version   GIF version

Theorem elpredg 6205
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elpredg ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))

Proof of Theorem elpredg
StepHypRef Expression
1 elpredgg 6204 . 2 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
2 ibar 528 . . . 4 (𝑌𝐴 → (𝑌𝑅𝑋 ↔ (𝑌𝐴𝑌𝑅𝑋)))
32bicomd 222 . . 3 (𝑌𝐴 → ((𝑌𝐴𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋))
43adantl 481 . 2 ((𝑋𝐵𝑌𝐴) → ((𝑌𝐴𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋))
51, 4bitrd 278 1 ((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191
This theorem is referenced by:  predpoirr  6225  predfrirr  6226  wfrlem10OLD  8120  wsuclem  33746  wsuclb  33749
  Copyright terms: Public domain W3C validator