Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpredg | Structured version Visualization version GIF version |
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elpredg | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg 6212 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
2 | ibar 528 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑌𝑅𝑋 ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
3 | 2 | bicomd 222 | . . 3 ⊢ (𝑌 ∈ 𝐴 → ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋)) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋) ↔ 𝑌𝑅𝑋)) |
5 | 1, 4 | bitrd 278 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 class class class wbr 5078 Predcpred 6198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 |
This theorem is referenced by: predpoirr 6233 predfrirr 6234 wfrlem10OLD 8133 wsuclem 33798 wsuclb 33801 |
Copyright terms: Public domain | W3C validator |