Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeltri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqeltri.1 | ⊢ 𝐴 = 𝐵 |
eqeltri.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltri.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
2 | eqeltri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2827 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
Copyright terms: Public domain | W3C validator |