| Metamath
Proof Explorer Theorem List (p. 62 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30927) |
(30928-32450) |
(32451-49315) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | relimasn 6101* | The image of a singleton. (Contributed by NM, 20-May-1998.) |
| ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
| Theorem | elrelimasn 6102 | Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) | ||
| Theorem | elimasng1 6103 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5142 and to prove elimasn1 6104 from it. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | ||
| Theorem | elimasn1 6104 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5142 and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) | ||
| Theorem | elimasng 6105 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6103, remove, and relabel elimasng1 6103 to "elimasng". |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
| Theorem | elimasn 6106 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by BJ, 16-Oct-2024.) TODO: replace existing usages by usages of elimasn1 6104, remove, and relabel elimasn1 6104 to "elimasn". |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | ||
| Theorem | elimasni 6107 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
| ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
| Theorem | args 6108* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6901 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
| ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
| Theorem | elinisegg 6109 | Membership in the inverse image of a singleton. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Put in closed form and shorten proof. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | eliniseg 6110 | Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | epin 6111 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) | ||
| Theorem | epini 6112 | Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
| Theorem | iniseg 6113* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
| ⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
| Theorem | inisegn0 6114 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
| Theorem | dffr3 6115* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
| Theorem | dfse2 6116* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
| Theorem | imass1 6117 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) | ||
| Theorem | imass2 6118 | Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
| Theorem | ndmima 6119 | The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) | ||
| Theorem | relcnv 6120 | A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| ⊢ Rel ◡𝐴 | ||
| Theorem | relbrcnvg 6121 | When 𝑅 is a relation, the sethood assumptions on brcnv 5891 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
| Theorem | eliniseg2 6122 | Eliminate the class existence constraint in eliniseg 6110. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
| ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
| Theorem | relbrcnv 6123 | When 𝑅 is a relation, the sethood assumptions on brcnv 5891 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
| Theorem | relco 6124 | A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
| ⊢ Rel (𝐴 ∘ 𝐵) | ||
| Theorem | cotrg 6125* | Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 6128 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6128. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) Avoid ax-11 2157. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotrgOLD 6126* | Obsolete version of cotrg 6125 as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6128. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotrgOLDOLD 6127* | Obsolete version of cotrg 6125 as of 19-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6128. (Revised by Richard Penner, 24-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
| Theorem | cotr 6128* | Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 6125. (Contributed by NM, 27-Dec-1996.) |
| ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | ||
| Theorem | idrefALT 6129* | Alternate proof of idref 7164 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
| Theorem | cnvsym 6130* | Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) Avoid ax-11 2157. (Revised by BTernaryTau, 29-Dec-2024.) |
| ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | cnvsymOLD 6131* | Obsolete version of cnvsym 6130 as of 29-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | cnvsymOLDOLD 6132* | Obsolete version of cnvsym 6130 as of 23-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | intasym 6133* | Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
| Theorem | asymref 6134* | Two ways of saying a relation is antisymmetric and reflexive. ∪ ∪ 𝑅 is the field of a relation by relfld 6293. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) | ||
| Theorem | asymref2 6135* | Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
| ⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | ||
| Theorem | intirr 6136* | Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥) | ||
| Theorem | brcodir 6137* | Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) | ||
| Theorem | codir 6138* | Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) | ||
| Theorem | qfto 6139* | A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| ⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | ||
| Theorem | xpidtr 6140 | A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
| ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | ||
| Theorem | trin2 6141 | The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.) |
| ⊢ (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆) → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ (𝑅 ∩ 𝑆)) | ||
| Theorem | poirr2 6142 | A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) | ||
| Theorem | trinxp 6143 | The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a Cartesian square is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.) |
| ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) | ||
| Theorem | soirri 6144 | A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ 𝐴𝑅𝐴 | ||
| Theorem | sotri 6145 | A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | son2lpi 6146 | A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) | ||
| Theorem | sotri2 6147 | A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | sotri3 6148 | A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) | ||
| Theorem | poleloe 6149 | Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | poltletr 6150 | Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | ||
| Theorem | somin1 6151 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴) | ||
| Theorem | somincom 6152 | Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | ||
| Theorem | somin2 6153 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) | ||
| Theorem | soltmin 6154 | Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) | ||
| Theorem | cnvopab 6155* | The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2141, ax-12 2177. (Revised by SN, 7-Jun-2025.) |
| ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
| Theorem | cnvopabOLD 6156* | Obsolete version of cnvopab 6155 as of 7-Jun-2025. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
| Theorem | mptcnv 6157* | The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | cnv0 6158 | The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5294, ax-nul 5304, ax-pr 5430. (Revised by KP, 25-Oct-2021.) |
| ⊢ ◡∅ = ∅ | ||
| Theorem | cnvi 6159 | The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡ I = I | ||
| Theorem | cnvun 6160 | The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | ||
| Theorem | cnvdif 6161 | Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | ||
| Theorem | cnvin 6162 | Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | ||
| Theorem | rnun 6163 | Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) | ||
| Theorem | rnin 6164 | The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) | ||
| Theorem | rniun 6165 | The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 | ||
| Theorem | rnuni 6166* | The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
| ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | ||
| Theorem | imaundi 6167 | Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) | ||
| Theorem | imaundir 6168 | The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
| ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) | ||
| Theorem | imadifssran 6169 | Condition for the range of a relation to be the range of one its restrictions. (Contributed by AV, 4-Oct-2025.) |
| ⊢ ((Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → ran 𝐹 = ran (𝐹 ↾ 𝐴))) | ||
| Theorem | cnvimassrndm 6170 | The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6099 for subsets. (Contributed by AV, 18-Sep-2024.) |
| ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) | ||
| Theorem | dminss 6171 | An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.) |
| ⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) | ||
| Theorem | imainss 6172 | An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.) |
| ⊢ ((𝑅 “ 𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (◡𝑅 “ 𝐵))) | ||
| Theorem | inimass 6173 | The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) | ||
| Theorem | inimasn 6174 | The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) | ||
| Theorem | cnvxp 6175 | The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | ||
| Theorem | xp0 6176 | The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (𝐴 × ∅) = ∅ | ||
| Theorem | xpnz 6177 | The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | ||
| Theorem | xpeq0 6178 | At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) | ||
| Theorem | xpdisj1 6179 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) | ||
| Theorem | xpdisj2 6180 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) | ||
| Theorem | xpsndisj 6181 | Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.) |
| ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) | ||
| Theorem | difxp 6182 | Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| ⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) | ||
| Theorem | difxp1 6183 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) | ||
| Theorem | difxp2 6184 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐴 × (𝐵 ∖ 𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) | ||
| Theorem | djudisj 6185* | Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | ||
| Theorem | xpdifid 6186* | The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I ) | ||
| Theorem | resdisj 6187 | A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) | ||
| Theorem | rnxp 6188 | The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | ||
| Theorem | dmxpss 6189 | The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | ||
| Theorem | rnxpss 6190 | The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | ||
| Theorem | rnxpid 6191 | The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
| ⊢ ran (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | ssxpb 6192 | A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.) |
| ⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) | ||
| Theorem | xp11 6193 | The Cartesian product of nonempty classes is a one-to-one "function" of its two "arguments". In other words, two Cartesian products, at least one with nonempty factors, are equal if and only if their respective factors are equal. (Contributed by NM, 31-May-2008.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | xpcan 6194 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
| ⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | xpcan2 6195 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
| ⊢ (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | ssrnres 6196 | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | ||
| Theorem | rninxp 6197* | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) | ||
| Theorem | dminxp 6198* | Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) |
| ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) | ||
| Theorem | imainrect 6199 | Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| ⊢ ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌 ∩ 𝐴)) ∩ 𝐵) | ||
| Theorem | xpima 6200 | Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |