| Metamath
Proof Explorer Theorem List (p. 62 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cnvxp 6101 | The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | ||
| Theorem | xp0 6102 | The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (𝐴 × ∅) = ∅ | ||
| Theorem | xpnz 6103 | The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | ||
| Theorem | xpeq0 6104 | At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) | ||
| Theorem | xpdisj1 6105 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) | ||
| Theorem | xpdisj2 6106 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) | ||
| Theorem | xpsndisj 6107 | Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.) |
| ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) | ||
| Theorem | difxp 6108 | Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| ⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) | ||
| Theorem | difxp1 6109 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) | ||
| Theorem | difxp2 6110 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐴 × (𝐵 ∖ 𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) | ||
| Theorem | djudisj 6111* | Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | ||
| Theorem | xpdifid 6112* | The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I ) | ||
| Theorem | resdisj 6113 | A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) | ||
| Theorem | rnxp 6114 | The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | ||
| Theorem | dmxpss 6115 | The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | ||
| Theorem | rnxpss 6116 | The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | ||
| Theorem | rnxpid 6117 | The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
| ⊢ ran (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | ssxpb 6118 | A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.) |
| ⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) | ||
| Theorem | xp11 6119 | The Cartesian product of nonempty classes is a one-to-one "function" of its two "arguments". In other words, two Cartesian products, at least one with nonempty factors, are equal if and only if their respective factors are equal. (Contributed by NM, 31-May-2008.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | xpcan 6120 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
| ⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | xpcan2 6121 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
| ⊢ (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | ssrnres 6122 | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | ||
| Theorem | rninxp 6123* | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) | ||
| Theorem | dminxp 6124* | Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) |
| ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) | ||
| Theorem | imainrect 6125 | Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| ⊢ ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌 ∩ 𝐴)) ∩ 𝐵) | ||
| Theorem | xpima 6126 | Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | ||
| Theorem | xpima1 6127 | Direct image by a Cartesian product (case of empty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) | ||
| Theorem | xpima2 6128 | Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) | ||
| Theorem | xpimasn 6129 | Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
| ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | ||
| Theorem | sossfld 6130 | The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | sofld 6131 | The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | cnvcnv3 6132* | The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} | ||
| Theorem | dfrel2 6133 | Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | ||
| Theorem | dfrel4v 6134* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6875 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
| Theorem | dfrel4 6135* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6875 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑦𝑅 ⇒ ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
| Theorem | cnvcnv 6136 | The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
| ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | ||
| Theorem | cnvcnv2 6137 | The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
| ⊢ ◡◡𝐴 = (𝐴 ↾ V) | ||
| Theorem | cnvcnvss 6138 | The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| ⊢ ◡◡𝐴 ⊆ 𝐴 | ||
| Theorem | cnvrescnv 6139 | Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.) |
| ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) | ||
| Theorem | cnveqb 6140 | Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
| ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) | ||
| Theorem | cnveq0 6141 | A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
| ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) | ||
| Theorem | dfrel3 6142 | Alternate definition of relation. (Contributed by NM, 14-May-2008.) |
| ⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) | ||
| Theorem | elid 6143* | Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6142 after elrid 5992. (Contributed by BJ, 28-Aug-2022.) |
| ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | ||
| Theorem | dmresv 6144 | The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
| ⊢ dom (𝐴 ↾ V) = dom 𝐴 | ||
| Theorem | rnresv 6145 | The range of a universal restriction. (Contributed by NM, 14-May-2008.) |
| ⊢ ran (𝐴 ↾ V) = ran 𝐴 | ||
| Theorem | dfrn4 6146 | Range defined in terms of image. (Contributed by NM, 14-May-2008.) |
| ⊢ ran 𝐴 = (𝐴 “ V) | ||
| Theorem | csbrn 6147 | Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
| ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | rescnvcnv 6148 | The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
| Theorem | cnvcnvres 6149 | The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
| ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) | ||
| Theorem | imacnvcnv 6150 | The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) | ||
| Theorem | dmsnn0 6151 | The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | ||
| Theorem | rnsnn0 6152 | The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | ||
| Theorem | dmsn0 6153 | The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| ⊢ dom {∅} = ∅ | ||
| Theorem | cnvsn0 6154 | The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ◡{∅} = ∅ | ||
| Theorem | dmsn0el 6155 | The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
| ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | ||
| Theorem | relsn2 6156 | A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) | ||
| Theorem | dmsnopg 6157 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | ||
| Theorem | dmsnopss 6158 | The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} | ||
| Theorem | dmpropg 6159 | The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | ||
| Theorem | dmsnop 6160 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} | ||
| Theorem | dmprop 6161 | The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} | ||
| Theorem | dmtpop 6162 | The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} | ||
| Theorem | cnvcnvsn 6163 | Double converse of a singleton of an ordered pair. (Unlike cnvsn 6170, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} | ||
| Theorem | dmsnsnsn 6164 | The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ dom {{{𝐴}}} = {𝐴} | ||
| Theorem | rnsnopg 6165 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) | ||
| Theorem | rnpropg 6166 | The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) | ||
| Theorem | cnvsng 6167 | Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | ||
| Theorem | rnsnop 6168 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} | ||
| Theorem | op1sta 6169 | Extract the first member of an ordered pair. (See op2nda 6172 to extract the second member, op1stb 5409 for an alternate version, and op1st 7924 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
| Theorem | cnvsn 6170 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
| Theorem | op2ndb 6171 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5409 to extract the first member, op2nda 6172 for an alternate version, and op2nd 7925 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
| Theorem | op2nda 6172 | Extract the second member of an ordered pair. (See op1sta 6169 to extract the first member, op2ndb 6171 for an alternate version, and op2nd 7925 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 | ||
| Theorem | opswap 6173 | Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | ||
| Theorem | cnvresima 6174 | An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
| ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) | ||
| Theorem | resdm2 6175 | A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | ||
| Theorem | resdmres 6176 | Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
| Theorem | resresdm 6177 | A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
| ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | ||
| Theorem | imadmres 6178 | The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 “ dom (𝐴 ↾ 𝐵)) = (𝐴 “ 𝐵) | ||
| Theorem | resdmss 6179 | Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 | ||
| Theorem | resdifdi 6180 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) | ||
| Theorem | resdifdir 6181 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | ||
| Theorem | mptpreima 6182* | The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | ||
| Theorem | mptiniseg 6183* | Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) | ||
| Theorem | dmmpt 6184 | The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | ||
| Theorem | dmmptss 6185* | The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
| Theorem | dmmptg 6186* | The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | ||
| Theorem | rnmpt0f 6187* | The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | rnmptn0 6188* | The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 ≠ ∅) | ||
| Theorem | dfco2 6189* | Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
| ⊢ (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) | ||
| Theorem | dfco2a 6190* | Generalization of dfco2 6189, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) | ||
| Theorem | coundi 6191 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) | ||
| Theorem | coundir 6192 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∘ 𝐶) = ((𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶)) | ||
| Theorem | cores 6193 | Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | ||
| Theorem | resco 6194 | Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
| ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) | ||
| Theorem | imaco 6195 | Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) | ||
| Theorem | rnco 6196 | The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | ||
| Theorem | rnco2 6197 | The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) | ||
| Theorem | dmco 6198 | The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
| ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) | ||
| Theorem | coeq0 6199 | A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6191 and coundir 6192 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | ||
| Theorem | coiun 6200* | Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
| ⊢ (𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |