Home | Metamath
Proof Explorer Theorem List (p. 62 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnvcnv2 6101 | The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
⊢ ◡◡𝐴 = (𝐴 ↾ V) | ||
Theorem | cnvcnvss 6102 | The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
⊢ ◡◡𝐴 ⊆ 𝐴 | ||
Theorem | cnvrescnv 6103 | Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.) |
⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) | ||
Theorem | cnveqb 6104 | Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) | ||
Theorem | cnveq0 6105 | A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) | ||
Theorem | dfrel3 6106 | Alternate definition of relation. (Contributed by NM, 14-May-2008.) |
⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) | ||
Theorem | elid 6107* | Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6106 after elrid 5956. (Contributed by BJ, 28-Aug-2022.) |
⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | ||
Theorem | dmresv 6108 | The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
⊢ dom (𝐴 ↾ V) = dom 𝐴 | ||
Theorem | rnresv 6109 | The range of a universal restriction. (Contributed by NM, 14-May-2008.) |
⊢ ran (𝐴 ↾ V) = ran 𝐴 | ||
Theorem | dfrn4 6110 | Range defined in terms of image. (Contributed by NM, 14-May-2008.) |
⊢ ran 𝐴 = (𝐴 “ V) | ||
Theorem | csbrn 6111 | Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | rescnvcnv 6112 | The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
Theorem | cnvcnvres 6113 | The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) | ||
Theorem | imacnvcnv 6114 | The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) | ||
Theorem | dmsnn0 6115 | The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | ||
Theorem | rnsnn0 6116 | The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | ||
Theorem | dmsn0 6117 | The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
⊢ dom {∅} = ∅ | ||
Theorem | cnvsn0 6118 | The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ◡{∅} = ∅ | ||
Theorem | dmsn0el 6119 | The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | ||
Theorem | relsn2 6120 | A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) | ||
Theorem | dmsnopg 6121 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | ||
Theorem | dmsnopss 6122 | The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} | ||
Theorem | dmpropg 6123 | The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | ||
Theorem | dmsnop 6124 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} | ||
Theorem | dmprop 6125 | The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} | ||
Theorem | dmtpop 6126 | The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} | ||
Theorem | cnvcnvsn 6127 | Double converse of a singleton of an ordered pair. (Unlike cnvsn 6134, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} | ||
Theorem | dmsnsnsn 6128 | The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ dom {{{𝐴}}} = {𝐴} | ||
Theorem | rnsnopg 6129 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) | ||
Theorem | rnpropg 6130 | The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) | ||
Theorem | cnvsng 6131 | Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | ||
Theorem | rnsnop 6132 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} | ||
Theorem | op1sta 6133 | Extract the first member of an ordered pair. (See op2nda 6136 to extract the second member, op1stb 5387 for an alternate version, and op1st 7848 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
Theorem | cnvsn 6134 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
Theorem | op2ndb 6135 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5387 to extract the first member, op2nda 6136 for an alternate version, and op2nd 7849 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
Theorem | op2nda 6136 | Extract the second member of an ordered pair. (See op1sta 6133 to extract the first member, op2ndb 6135 for an alternate version, and op2nd 7849 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 | ||
Theorem | opswap 6137 | Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | ||
Theorem | cnvresima 6138 | An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) | ||
Theorem | resdm2 6139 | A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | ||
Theorem | resdmres 6140 | Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
Theorem | resresdm 6141 | A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | ||
Theorem | imadmres 6142 | The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 “ dom (𝐴 ↾ 𝐵)) = (𝐴 “ 𝐵) | ||
Theorem | resdmss 6143 | Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 | ||
Theorem | resdifdi 6144 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) | ||
Theorem | resdifdir 6145 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | ||
Theorem | mptpreima 6146* | The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | ||
Theorem | mptiniseg 6147* | Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) | ||
Theorem | dmmpt 6148 | The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | ||
Theorem | dmmptss 6149* | The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | dmmptg 6150* | The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | ||
Theorem | rnmpt0f 6151* | The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) | ||
Theorem | rnmptn0 6152* | The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 ≠ ∅) | ||
Theorem | dfco2 6153* | Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
⊢ (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) | ||
Theorem | dfco2a 6154* | Generalization of dfco2 6153, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) | ||
Theorem | coundi 6155 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) | ||
Theorem | coundir 6156 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∘ 𝐶) = ((𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶)) | ||
Theorem | cores 6157 | Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | ||
Theorem | resco 6158 | Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) | ||
Theorem | imaco 6159 | Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) |
⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) | ||
Theorem | rnco 6160 | The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | ||
Theorem | rnco2 6161 | The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) | ||
Theorem | dmco 6162 | The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) | ||
Theorem | coeq0 6163 | A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6155 and coundir 6156 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | ||
Theorem | coiun 6164* | Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
⊢ (𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
Theorem | cocnvcnv1 6165 | A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | ||
Theorem | cocnvcnv2 6166 | A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) | ||
Theorem | cores2 6167 | Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) | ||
Theorem | co02 6168 | Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐴 ∘ ∅) = ∅ | ||
Theorem | co01 6169 | Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
⊢ (∅ ∘ 𝐴) = ∅ | ||
Theorem | coi1 6170 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) | ||
Theorem | coi2 6171 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) | ||
Theorem | coires1 6172 | Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
Theorem | coass 6173 | Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) | ||
Theorem | relcnvtrg 6174 | General form of relcnvtr 6175. (Contributed by Peter Mazsa, 17-Oct-2023.) |
⊢ ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅 ∘ 𝑆) ⊆ 𝑇 ↔ (◡𝑆 ∘ ◡𝑅) ⊆ ◡𝑇)) | ||
Theorem | relcnvtr 6175 | A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.) |
⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | ||
Theorem | relssdmrn 6176 | A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) |
⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
Theorem | resssxp 6177 | If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) | ||
Theorem | cnvssrndm 6178 | The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | ||
Theorem | cossxp 6179 | Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | ||
Theorem | relrelss 6180 | Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.) |
⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) | ||
Theorem | unielrel 6181 | The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) | ||
Theorem | relfld 6182 | The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | ||
Theorem | relresfld 6183 | Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.) |
⊢ (Rel 𝑅 → (𝑅 ↾ ∪ ∪ 𝑅) = 𝑅) | ||
Theorem | relcoi2 6184 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) | ||
Theorem | relcoi1 6185 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) | ||
Theorem | unidmrn 6186 | The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) | ||
Theorem | relcnvfld 6187 | if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.) |
⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) | ||
Theorem | dfdm2 6188 | Alternate definition of domain df-dm 5600 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) | ||
Theorem | unixp 6189 | The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | ||
Theorem | unixp0 6190 | A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) | ||
Theorem | unixpid 6191 | Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.) |
⊢ ∪ ∪ (𝐴 × 𝐴) = 𝐴 | ||
Theorem | ressn 6192 | Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) | ||
Theorem | cnviin 6193* | The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.) |
⊢ (𝐴 ≠ ∅ → ◡∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡𝐵) | ||
Theorem | cnvpo 6194 | The converse of a partial order is a partial order. (Contributed by NM, 15-Jun-2005.) |
⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | ||
Theorem | cnvso 6195 | The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | ||
Theorem | xpco 6196 | Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
⊢ (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶)) | ||
Theorem | xpcoid 6197 | Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) | ||
Theorem | elsnxp 6198* | Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ (𝑋 ∈ 𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑍 = 〈𝑋, 𝑦〉)) | ||
Theorem | reu3op 6199* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.) |
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 𝜒 ∧ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑌 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
Theorem | reuop 6200* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 23-Jun-2023.) |
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝜃 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |