| Metamath
Proof Explorer Theorem List (p. 62 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | son2lpi 6101 | A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) | ||
| Theorem | sotri2 6102 | A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
| Theorem | sotri3 6103 | A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
| ⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) | ||
| Theorem | poleloe 6104 | Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | poltletr 6105 | Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | ||
| Theorem | somin1 6106 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴) | ||
| Theorem | somincom 6107 | Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | ||
| Theorem | somin2 6108 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) | ||
| Theorem | soltmin 6109 | Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) | ||
| Theorem | cnvopab 6110* | The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 7-Jun-2025.) |
| ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
| Theorem | cnvopabOLD 6111* | Obsolete version of cnvopab 6110 as of 7-Jun-2025. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
| Theorem | mptcnv 6112* | The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
| Theorem | cnv0 6113 | The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5251, ax-nul 5261, ax-pr 5387. (Revised by KP, 25-Oct-2021.) |
| ⊢ ◡∅ = ∅ | ||
| Theorem | cnvi 6114 | The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡ I = I | ||
| Theorem | cnvun 6115 | The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | ||
| Theorem | cnvdif 6116 | Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | ||
| Theorem | cnvin 6117 | Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | ||
| Theorem | rnun 6118 | Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
| ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) | ||
| Theorem | rnin 6119 | The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) | ||
| Theorem | rniun 6120 | The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 | ||
| Theorem | rnuni 6121* | The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
| ⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | ||
| Theorem | imaundi 6122 | Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| ⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) | ||
| Theorem | imaundir 6123 | The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
| ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) | ||
| Theorem | imadifssran 6124 | Condition for the range of a relation to be the range of one its restrictions. (Contributed by AV, 4-Oct-2025.) |
| ⊢ ((Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → ran 𝐹 = ran (𝐹 ↾ 𝐴))) | ||
| Theorem | cnvimassrndm 6125 | The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6054 for subsets. (Contributed by AV, 18-Sep-2024.) |
| ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) | ||
| Theorem | dminss 6126 | An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising". (Contributed by NM, 11-Aug-2004.) |
| ⊢ (dom 𝑅 ∩ 𝐴) ⊆ (◡𝑅 “ (𝑅 “ 𝐴)) | ||
| Theorem | imainss 6127 | An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.) |
| ⊢ ((𝑅 “ 𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (◡𝑅 “ 𝐵))) | ||
| Theorem | inimass 6128 | The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) | ||
| Theorem | inimasn 6129 | The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ (𝐶 ∈ 𝑉 → ((𝐴 ∩ 𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶}))) | ||
| Theorem | cnvxp 6130 | The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | ||
| Theorem | xp0 6131 | The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (𝐴 × ∅) = ∅ | ||
| Theorem | xpnz 6132 | The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | ||
| Theorem | xpeq0 6133 | At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) | ||
| Theorem | xpdisj1 6134 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅) | ||
| Theorem | xpdisj2 6135 | Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅) | ||
| Theorem | xpsndisj 6136 | Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.) |
| ⊢ (𝐵 ≠ 𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅) | ||
| Theorem | difxp 6137 | Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| ⊢ ((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶 ∖ 𝐴) × 𝐷) ∪ (𝐶 × (𝐷 ∖ 𝐵))) | ||
| Theorem | difxp1 6138 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐴 ∖ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) | ||
| Theorem | difxp2 6139 | Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐴 × (𝐵 ∖ 𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶)) | ||
| Theorem | djudisj 6140* | Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ∩ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝐷)) = ∅) | ||
| Theorem | xpdifid 6141* | The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I ) | ||
| Theorem | resdisj 6142 | A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐶 ↾ 𝐴) ↾ 𝐵) = ∅) | ||
| Theorem | rnxp 6143 | The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | ||
| Theorem | dmxpss 6144 | The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | ||
| Theorem | rnxpss 6145 | The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | ||
| Theorem | rnxpid 6146 | The range of a Cartesian square. (Contributed by FL, 17-May-2010.) |
| ⊢ ran (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | ssxpb 6147 | A Cartesian product subclass relationship is equivalent to the conjunction of the analogous relationships for the factors. (Contributed by NM, 17-Dec-2008.) |
| ⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) | ||
| Theorem | xp11 6148 | The Cartesian product of nonempty classes is a one-to-one "function" of its two "arguments". In other words, two Cartesian products, at least one with nonempty factors, are equal if and only if their respective factors are equal. (Contributed by NM, 31-May-2008.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | xpcan 6149 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
| ⊢ (𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | xpcan2 6150 | Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.) |
| ⊢ (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | ssrnres 6151 | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product): the LHS expresses inclusion in the range of the restricted relation, while the RHS expresses equality with the range of the restricted and corestricted relation. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | ||
| Theorem | rninxp 6152* | Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) | ||
| Theorem | dminxp 6153* | Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) |
| ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) | ||
| Theorem | imainrect 6154 | Image by a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| ⊢ ((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌 ∩ 𝐴)) ∩ 𝐵) | ||
| Theorem | xpima 6155 | Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| ⊢ ((𝐴 × 𝐵) “ 𝐶) = if((𝐴 ∩ 𝐶) = ∅, ∅, 𝐵) | ||
| Theorem | xpima1 6156 | Direct image by a Cartesian product (case of empty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝐴 ∩ 𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅) | ||
| Theorem | xpima2 6157 | Direct image by a Cartesian product (case of nonempty intersection with the domain). (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝐴 ∩ 𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵) | ||
| Theorem | xpimasn 6158 | Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.) |
| ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵) | ||
| Theorem | sossfld 6159 | The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | sofld 6160 | The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | cnvcnv3 6161* | The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} | ||
| Theorem | dfrel2 6162 | Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | ||
| Theorem | dfrel4v 6163* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6919 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
| Theorem | dfrel4 6164* | A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6919 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑦𝑅 ⇒ ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) | ||
| Theorem | cnvcnv 6165 | The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.) |
| ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | ||
| Theorem | cnvcnv2 6166 | The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.) |
| ⊢ ◡◡𝐴 = (𝐴 ↾ V) | ||
| Theorem | cnvcnvss 6167 | The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| ⊢ ◡◡𝐴 ⊆ 𝐴 | ||
| Theorem | cnvrescnv 6168 | Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023.) |
| ⊢ ◡(◡𝑅 ↾ 𝐵) = (𝑅 ∩ (V × 𝐵)) | ||
| Theorem | cnveqb 6169 | Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
| ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) | ||
| Theorem | cnveq0 6170 | A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
| ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) | ||
| Theorem | dfrel3 6171 | Alternate definition of relation. (Contributed by NM, 14-May-2008.) |
| ⊢ (Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅) | ||
| Theorem | elid 6172* | Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6171 after elrid 6017. (Contributed by BJ, 28-Aug-2022.) |
| ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | ||
| Theorem | dmresv 6173 | The domain of a universal restriction. (Contributed by NM, 14-May-2008.) |
| ⊢ dom (𝐴 ↾ V) = dom 𝐴 | ||
| Theorem | rnresv 6174 | The range of a universal restriction. (Contributed by NM, 14-May-2008.) |
| ⊢ ran (𝐴 ↾ V) = ran 𝐴 | ||
| Theorem | dfrn4 6175 | Range defined in terms of image. (Contributed by NM, 14-May-2008.) |
| ⊢ ran 𝐴 = (𝐴 “ V) | ||
| Theorem | csbrn 6176 | Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
| ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | rescnvcnv 6177 | The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
| Theorem | cnvcnvres 6178 | The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
| ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) | ||
| Theorem | imacnvcnv 6179 | The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) | ||
| Theorem | dmsnn0 6180 | The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | ||
| Theorem | rnsnn0 6181 | The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
| ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | ||
| Theorem | dmsn0 6182 | The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| ⊢ dom {∅} = ∅ | ||
| Theorem | cnvsn0 6183 | The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ◡{∅} = ∅ | ||
| Theorem | dmsn0el 6184 | The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
| ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | ||
| Theorem | relsn2 6185 | A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) | ||
| Theorem | dmsnopg 6186 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | ||
| Theorem | dmsnopss 6187 | The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} | ||
| Theorem | dmpropg 6188 | The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | ||
| Theorem | dmsnop 6189 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} | ||
| Theorem | dmprop 6190 | The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} | ||
| Theorem | dmtpop 6191 | The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} | ||
| Theorem | cnvcnvsn 6192 | Double converse of a singleton of an ordered pair. (Unlike cnvsn 6199, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} | ||
| Theorem | dmsnsnsn 6193 | The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ dom {{{𝐴}}} = {𝐴} | ||
| Theorem | rnsnopg 6194 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) | ||
| Theorem | rnpropg 6195 | The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) | ||
| Theorem | cnvsng 6196 | Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | ||
| Theorem | rnsnop 6197 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} | ||
| Theorem | op1sta 6198 | Extract the first member of an ordered pair. (See op2nda 6201 to extract the second member, op1stb 5431 for an alternate version, and op1st 7976 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
| Theorem | cnvsn 6199 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
| Theorem | op2ndb 6200 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5431 to extract the first member, op2nda 6201 for an alternate version, and op2nd 7977 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |