Home | Metamath
Proof Explorer Theorem List (p. 62 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dmsn0 6101 | The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
⊢ dom {∅} = ∅ | ||
Theorem | cnvsn0 6102 | The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ◡{∅} = ∅ | ||
Theorem | dmsn0el 6103 | The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | ||
Theorem | relsn2 6104 | A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) | ||
Theorem | dmsnopg 6105 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | ||
Theorem | dmsnopss 6106 | The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} | ||
Theorem | dmpropg 6107 | The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | ||
Theorem | dmsnop 6108 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐵 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} | ||
Theorem | dmprop 6109 | The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} | ||
Theorem | dmtpop 6110 | The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} | ||
Theorem | cnvcnvsn 6111 | Double converse of a singleton of an ordered pair. (Unlike cnvsn 6118, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} | ||
Theorem | dmsnsnsn 6112 | The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ dom {{{𝐴}}} = {𝐴} | ||
Theorem | rnsnopg 6113 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) | ||
Theorem | rnpropg 6114 | The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) | ||
Theorem | cnvsng 6115 | Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | ||
Theorem | rnsnop 6116 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} | ||
Theorem | op1sta 6117 | Extract the first member of an ordered pair. (See op2nda 6120 to extract the second member, op1stb 5380 for an alternate version, and op1st 7812 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
Theorem | cnvsn 6118 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
Theorem | op2ndb 6119 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5380 to extract the first member, op2nda 6120 for an alternate version, and op2nd 7813 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
Theorem | op2nda 6120 | Extract the second member of an ordered pair. (See op1sta 6117 to extract the first member, op2ndb 6119 for an alternate version, and op2nd 7813 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 | ||
Theorem | opswap 6121 | Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | ||
Theorem | cnvresima 6122 | An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) | ||
Theorem | resdm2 6123 | A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | ||
Theorem | resdmres 6124 | Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
Theorem | resresdm 6125 | A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | ||
Theorem | imadmres 6126 | The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
⊢ (𝐴 “ dom (𝐴 ↾ 𝐵)) = (𝐴 “ 𝐵) | ||
Theorem | resdmss 6127 | Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 | ||
Theorem | resdifdi 6128 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) | ||
Theorem | resdifdir 6129 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | ||
Theorem | mptpreima 6130* | The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | ||
Theorem | mptiniseg 6131* | Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) | ||
Theorem | dmmpt 6132 | The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | ||
Theorem | dmmptss 6133* | The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
Theorem | dmmptg 6134* | The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | ||
Theorem | rnmpt0f 6135* | The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) | ||
Theorem | rnmptn0 6136* | The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 ≠ ∅) | ||
Theorem | relco 6137 | A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
⊢ Rel (𝐴 ∘ 𝐵) | ||
Theorem | dfco2 6138* | Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
⊢ (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) | ||
Theorem | dfco2a 6139* | Generalization of dfco2 6138, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) | ||
Theorem | coundi 6140 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) | ||
Theorem | coundir 6141 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝐴 ∪ 𝐵) ∘ 𝐶) = ((𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶)) | ||
Theorem | cores 6142 | Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | ||
Theorem | resco 6143 | Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) | ||
Theorem | imaco 6144 | Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) |
⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) | ||
Theorem | rnco 6145 | The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | ||
Theorem | rnco2 6146 | The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) | ||
Theorem | dmco 6147 | The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) | ||
Theorem | coeq0 6148 | A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6140 and coundir 6141 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | ||
Theorem | coiun 6149* | Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
⊢ (𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
Theorem | cocnvcnv1 6150 | A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | ||
Theorem | cocnvcnv2 6151 | A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) | ||
Theorem | cores2 6152 | Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) | ||
Theorem | co02 6153 | Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐴 ∘ ∅) = ∅ | ||
Theorem | co01 6154 | Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
⊢ (∅ ∘ 𝐴) = ∅ | ||
Theorem | coi1 6155 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) | ||
Theorem | coi2 6156 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) | ||
Theorem | coires1 6157 | Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
Theorem | coass 6158 | Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) | ||
Theorem | relcnvtrg 6159 | General form of relcnvtr 6160. (Contributed by Peter Mazsa, 17-Oct-2023.) |
⊢ ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅 ∘ 𝑆) ⊆ 𝑇 ↔ (◡𝑆 ∘ ◡𝑅) ⊆ ◡𝑇)) | ||
Theorem | relcnvtr 6160 | A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.) |
⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | ||
Theorem | relssdmrn 6161 | A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) |
⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
Theorem | resssxp 6162 | If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) | ||
Theorem | cnvssrndm 6163 | The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | ||
Theorem | cossxp 6164 | Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | ||
Theorem | relrelss 6165 | Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.) |
⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) | ||
Theorem | unielrel 6166 | The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) | ||
Theorem | relfld 6167 | The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | ||
Theorem | relresfld 6168 | Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.) |
⊢ (Rel 𝑅 → (𝑅 ↾ ∪ ∪ 𝑅) = 𝑅) | ||
Theorem | relcoi2 6169 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) | ||
Theorem | relcoi1 6170 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) | ||
Theorem | unidmrn 6171 | The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) | ||
Theorem | relcnvfld 6172 | if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.) |
⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) | ||
Theorem | dfdm2 6173 | Alternate definition of domain df-dm 5590 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) | ||
Theorem | unixp 6174 | The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | ||
Theorem | unixp0 6175 | A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) | ||
Theorem | unixpid 6176 | Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.) |
⊢ ∪ ∪ (𝐴 × 𝐴) = 𝐴 | ||
Theorem | ressn 6177 | Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) | ||
Theorem | cnviin 6178* | The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.) |
⊢ (𝐴 ≠ ∅ → ◡∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡𝐵) | ||
Theorem | cnvpo 6179 | The converse of a partial order is a partial order. (Contributed by NM, 15-Jun-2005.) |
⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | ||
Theorem | cnvso 6180 | The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | ||
Theorem | xpco 6181 | Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
⊢ (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶)) | ||
Theorem | xpcoid 6182 | Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) | ||
Theorem | elsnxp 6183* | Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.) |
⊢ (𝑋 ∈ 𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑍 = 〈𝑋, 𝑦〉)) | ||
Theorem | reu3op 6184* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.) |
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 𝜒 ∧ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑌 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
Theorem | reuop 6185* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 23-Jun-2023.) |
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝜃 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
Theorem | opreu2reurex 6186* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) | ||
Theorem | opreu2reu 6187* | If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.) |
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎 ∈ 𝐴 ∃!𝑏 ∈ 𝐵 𝜒) | ||
Theorem | dfpo2 6188 | Quantifier-free definition of a partial ordering. (Contributed by Scott Fenton, 22-Feb-2013.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | ||
Theorem | csbcog 6189 | Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) | ||
Syntax | cpred 6190 | The predecessors symbol. |
class Pred(𝑅, 𝐴, 𝑋) | ||
Definition | df-pred 6191 | Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6208). (Contributed by Scott Fenton, 29-Jan-2011.) |
⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | ||
Theorem | predeq123 6192 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) | ||
Theorem | predeq1 6193 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) | ||
Theorem | predeq2 6194 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | ||
Theorem | predeq3 6195 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | ||
Theorem | nfpred 6196 | Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) | ||
Theorem | csbpredg 6197 | Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) | ||
Theorem | predpredss 6198 | If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) | ||
Theorem | predss 6199 | The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 | ||
Theorem | sspred 6200 | Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.) |
⊢ ((𝐵 ⊆ 𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |