![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setlikespec | Structured version Visualization version GIF version |
Description: If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
setlikespec | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)} | |
2 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | elpred 6349 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋))) |
4 | 3 | eqabdv 2878 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)}) |
5 | 1, 4 | eqtr4id 2799 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
7 | seex 5659 | . . 3 ⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) | |
8 | 7 | ancoms 458 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) |
9 | 6, 8 | eqeltrrd 2845 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 class class class wbr 5166 Se wse 5650 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-se 5653 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: sexp2 8187 sexp3 8194 fpr1 8344 wfrlem15OLD 8379 ttrclselem2 9795 frmin 9818 frr1 9828 |
Copyright terms: Public domain | W3C validator |