Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setlikespec | Structured version Visualization version GIF version |
Description: If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
setlikespec | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)} | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | elpred 6219 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋))) |
4 | 3 | abbi2dv 2877 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)}) |
5 | 1, 4 | eqtr4id 2797 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
7 | seex 5551 | . . 3 ⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) | |
8 | 7 | ancoms 459 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) |
9 | 6, 8 | eqeltrrd 2840 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 Vcvv 3432 class class class wbr 5074 Se wse 5542 Predcpred 6201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-se 5545 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 |
This theorem is referenced by: fpr1 8119 wfrlem15OLD 8154 ttrclselem2 9484 frmin 9507 frr1 9517 sexp2 33793 sexp3 33799 |
Copyright terms: Public domain | W3C validator |