| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setlikespec | Structured version Visualization version GIF version | ||
| Description: If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| setlikespec | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3409 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)} | |
| 2 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpred 6294 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋))) |
| 4 | 3 | eqabdv 2862 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)}) |
| 5 | 1, 4 | eqtr4id 2784 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
| 7 | seex 5600 | . . 3 ⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) | |
| 8 | 7 | ancoms 458 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) |
| 9 | 6, 8 | eqeltrrd 2830 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 Vcvv 3450 class class class wbr 5110 Se wse 5592 Predcpred 6276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-se 5595 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 |
| This theorem is referenced by: sexp2 8128 sexp3 8135 fpr1 8285 ttrclselem2 9686 frmin 9709 frr1 9719 |
| Copyright terms: Public domain | W3C validator |