MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setlikespec Structured version   Visualization version   GIF version

Theorem setlikespec 6348
Description: If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
setlikespec ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem setlikespec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3434 . . . 4 {𝑥𝐴𝑥𝑅𝑋} = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)}
2 vex 3482 . . . . . 6 𝑥 ∈ V
32elpred 6340 . . . . 5 (𝑋𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥𝐴𝑥𝑅𝑋)))
43eqabdv 2873 . . . 4 (𝑋𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)})
51, 4eqtr4id 2794 . . 3 (𝑋𝐴 → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
65adantr 480 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
7 seex 5648 . . 3 ((𝑅 Se 𝐴𝑋𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
87ancoms 458 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
96, 8eqeltrrd 2840 1 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {cab 2712  {crab 3433  Vcvv 3478   class class class wbr 5148   Se wse 5639  Predcpred 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-se 5642  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323
This theorem is referenced by:  sexp2  8170  sexp3  8177  fpr1  8327  wfrlem15OLD  8362  ttrclselem2  9764  frmin  9787  frr1  9797
  Copyright terms: Public domain W3C validator