MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setlikespec Structured version   Visualization version   GIF version

Theorem setlikespec 6172
Description: If 𝑅 is set-like in 𝐴, then all predecessors classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
setlikespec ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem setlikespec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3500 . . . . . 6 𝑥 ∈ V
21elpred 6164 . . . . 5 (𝑋𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥𝐴𝑥𝑅𝑋)))
32abbi2dv 2953 . . . 4 (𝑋𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)})
4 df-rab 3150 . . . 4 {𝑥𝐴𝑥𝑅𝑋} = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)}
53, 4syl6reqr 2878 . . 3 (𝑋𝐴 → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
65adantr 483 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
7 seex 5521 . . 3 ((𝑅 Se 𝐴𝑋𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
87ancoms 461 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
96, 8eqeltrrd 2917 1 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  {cab 2802  {crab 3145  Vcvv 3497   class class class wbr 5069   Se wse 5515  Predcpred 6150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-se 5518  df-xp 5564  df-cnv 5566  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151
This theorem is referenced by:  wfrlem15  7972  trpredtr  33073  trpredmintr  33074  trpredelss  33075  dftrpred3g  33076  trpredpo  33078  trpredrec  33081  frmin  33088  fpr1  33143  frr1  33148
  Copyright terms: Public domain W3C validator