MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setlikespec Structured version   Visualization version   GIF version

Theorem setlikespec 6277
Description: If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
setlikespec ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem setlikespec
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3397 . . . 4 {𝑥𝐴𝑥𝑅𝑋} = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)}
2 vex 3441 . . . . . 6 𝑥 ∈ V
32elpred 6270 . . . . 5 (𝑋𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥𝐴𝑥𝑅𝑋)))
43eqabdv 2866 . . . 4 (𝑋𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥𝐴𝑥𝑅𝑋)})
51, 4eqtr4id 2787 . . 3 (𝑋𝐴 → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
65adantr 480 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋))
7 seex 5578 . . 3 ((𝑅 Se 𝐴𝑋𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
87ancoms 458 . 2 ((𝑋𝐴𝑅 Se 𝐴) → {𝑥𝐴𝑥𝑅𝑋} ∈ V)
96, 8eqeltrrd 2834 1 ((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  Vcvv 3437   class class class wbr 5093   Se wse 5570  Predcpred 6252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-se 5573  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253
This theorem is referenced by:  sexp2  8082  sexp3  8089  fpr1  8239  ttrclselem2  9623  frmin  9649  frr1  9659
  Copyright terms: Public domain W3C validator