Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setlikespec | Structured version Visualization version GIF version |
Description: If 𝑅 is set-like in 𝐴, then all predecessor classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
setlikespec | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3404 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)} | |
2 | vex 3445 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | elpred 6256 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (𝑥 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋))) |
4 | 3 | abbi2dv 2875 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → Pred(𝑅, 𝐴, 𝑋) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑋)}) |
5 | 1, 4 | eqtr4id 2795 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} = Pred(𝑅, 𝐴, 𝑋)) |
7 | seex 5583 | . . 3 ⊢ ((𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) | |
8 | 7 | ancoms 459 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑋} ∈ V) |
9 | 6, 8 | eqeltrrd 2838 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 {crab 3403 Vcvv 3441 class class class wbr 5093 Se wse 5574 Predcpred 6238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-se 5577 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 |
This theorem is referenced by: fpr1 8190 wfrlem15OLD 8225 ttrclselem2 9584 frmin 9607 frr1 9617 sexp2 34077 sexp3 34083 |
Copyright terms: Public domain | W3C validator |