![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4186 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: indir 4305 difundir 4310 difindi 4311 dfsymdif3 4325 unrab 4334 rabun2 4343 elnelun 4416 dfif6 4551 dfif3 4562 dfif5 4564 symdif0 5108 symdifid 5110 unopab 5248 xpundi 5768 xpundir 5769 xpun 5773 dmun 5935 resundi 6023 resundir 6024 cnvun 6174 rnun 6177 imaundi 6181 imaundir 6182 dmtpop 6249 coundi 6278 coundir 6279 unidmrn 6310 dfdm2 6312 predun 6360 mptun 6726 partfun 6727 resasplit 6791 fresaun 6792 fresaunres2 6793 residpr 7177 fpr 7188 sbthlem5 9153 1sdomOLD 9312 djuassen 10248 fz0to3un2pr 13686 fz0to4untppr 13687 fz0to5un2tp 13688 fzo0to42pr 13803 hashgval 14382 hashinf 14384 relexpcnv 15084 bpoly3 16106 vdwlem6 17033 setsres 17225 lefld 18662 opsrtoslem1 22102 volun 25599 nosupcbv 27765 noinfcbv 27780 lrold 27953 addsval2 28014 addscut 28029 addsunif 28053 addsbday 28068 mulsval2 28155 muls01 28156 mulsproplem2 28161 mulsproplem3 28162 mulsproplem4 28163 mulscut 28176 mulsunif 28194 addsdilem1 28195 addsdilem2 28196 mulsasslem1 28207 mulsasslem2 28208 mulsunif2 28214 precsexlemcbv 28248 onaddscl 28304 onmulscl 28305 n0scut 28356 1p1e2s 28418 nohalf 28425 ex-dif 30455 ex-in 30457 ex-pw 30461 ex-xp 30468 ex-cnv 30469 ex-rn 30472 fzodif1 32798 ordtprsuni 33865 indval2 33978 sigaclfu2 34085 eulerpartgbij 34337 subfacp1lem1 35147 subfacp1lem5 35152 fmla1 35355 fixun 35873 refssfne 36324 onint1 36415 bj-pr1un 36969 bj-pr21val 36979 bj-pr2un 36983 bj-pr22val 36985 poimirlem16 37596 poimirlem19 37599 itg2addnclem2 37632 iblabsnclem 37643 df3o3 43276 rclexi 43577 rtrclex 43579 cnvrcl0 43587 dfrtrcl5 43591 dfrcl2 43636 dfrcl4 43638 iunrelexp0 43664 relexpiidm 43666 corclrcl 43669 relexp01min 43675 corcltrcl 43701 cotrclrcl 43704 frege131d 43726 rnfdmpr 47196 31prm 47471 |
Copyright terms: Public domain | W3C validator |