Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4092 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: indir 4209 difundir 4214 difindi 4215 dfsymdif3 4230 unrab 4239 rabun2 4247 elnelun 4323 dfif6 4462 dfif3 4473 dfif5 4475 symdif0 5014 symdifid 5016 unopab 5156 xpundi 5655 xpundir 5656 xpun 5660 dmun 5819 resundi 5905 resundir 5906 cnvun 6046 rnun 6049 imaundi 6053 imaundir 6054 dmtpop 6121 coundi 6151 coundir 6152 unidmrn 6182 dfdm2 6184 predun 6231 mptun 6579 partfun 6580 resasplit 6644 fresaun 6645 fresaunres2 6646 residpr 7015 fpr 7026 sbthlem5 8874 1sdom 9025 djuassen 9934 fz0to3un2pr 13358 fz0to4untppr 13359 fzo0to42pr 13474 hashgval 14047 hashinf 14049 relexpcnv 14746 bpoly3 15768 vdwlem6 16687 setsres 16879 lefld 18310 opsrtoslem1 21262 volun 24709 ex-dif 28787 ex-in 28789 ex-pw 28793 ex-xp 28800 ex-cnv 28801 ex-rn 28804 fzodif1 31114 ordtprsuni 31869 indval2 31982 sigaclfu2 32089 eulerpartgbij 32339 subfacp1lem1 33141 subfacp1lem5 33146 fmla1 33349 nosupcbv 33905 noinfcbv 33920 lrold 34077 fixun 34211 refssfne 34547 onint1 34638 bj-pr1un 35193 bj-pr21val 35203 bj-pr2un 35207 bj-pr22val 35209 poimirlem16 35793 poimirlem19 35796 itg2addnclem2 35829 iblabsnclem 35840 rclexi 41223 rtrclex 41225 cnvrcl0 41233 dfrtrcl5 41237 dfrcl2 41282 dfrcl4 41284 iunrelexp0 41310 relexpiidm 41312 corclrcl 41315 relexp01min 41321 corcltrcl 41347 cotrclrcl 41350 frege131d 41372 df3o3 41635 rnfdmpr 44773 31prm 45049 |
Copyright terms: Public domain | W3C validator |