Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4088 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: indir 4206 difundir 4211 difindi 4212 dfsymdif3 4227 unrab 4236 rabun2 4244 elnelun 4320 dfif6 4459 dfif3 4470 dfif5 4472 symdif0 5010 symdifid 5012 unopab 5152 xpundi 5646 xpundir 5647 xpun 5651 dmun 5808 resundi 5894 resundir 5895 cnvun 6035 rnun 6038 imaundi 6042 imaundir 6043 dmtpop 6110 coundi 6140 coundir 6141 unidmrn 6171 dfdm2 6173 predun 6220 mptun 6563 partfun 6564 resasplit 6628 fresaun 6629 fresaunres2 6630 residpr 6997 fpr 7008 sbthlem5 8827 1sdom 8955 djuassen 9865 fz0to3un2pr 13287 fz0to4untppr 13288 fzo0to42pr 13402 hashgval 13975 hashinf 13977 relexpcnv 14674 bpoly3 15696 vdwlem6 16615 setsres 16807 lefld 18225 opsrtoslem1 21172 volun 24614 ex-dif 28688 ex-in 28690 ex-pw 28694 ex-xp 28701 ex-cnv 28702 ex-rn 28705 fzodif1 31016 ordtprsuni 31771 indval2 31882 sigaclfu2 31989 eulerpartgbij 32239 subfacp1lem1 33041 subfacp1lem5 33046 fmla1 33249 nosupcbv 33832 noinfcbv 33847 lrold 34004 fixun 34138 refssfne 34474 onint1 34565 bj-pr1un 35120 bj-pr21val 35130 bj-pr2un 35134 bj-pr22val 35136 poimirlem16 35720 poimirlem19 35723 itg2addnclem2 35756 iblabsnclem 35767 rclexi 41112 rtrclex 41114 cnvrcl0 41122 dfrtrcl5 41126 dfrcl2 41171 dfrcl4 41173 iunrelexp0 41199 relexpiidm 41201 corclrcl 41204 relexp01min 41210 corcltrcl 41236 cotrclrcl 41239 frege131d 41261 df3o3 41524 rnfdmpr 44660 31prm 44937 |
Copyright terms: Public domain | W3C validator |