![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4172 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∪ cun 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 |
This theorem is referenced by: indir 4291 difundir 4296 difindi 4297 dfsymdif3 4311 unrab 4320 rabun2 4329 elnelun 4398 dfif6 4533 dfif3 4544 dfif5 4546 symdif0 5089 symdifid 5091 unopab 5229 xpundi 5756 xpundir 5757 xpun 5761 dmun 5923 resundi 6013 resundir 6014 cnvun 6164 rnun 6167 imaundi 6171 imaundir 6172 dmtpop 6239 coundi 6268 coundir 6269 unidmrn 6300 dfdm2 6302 predun 6350 mptun 6714 partfun 6715 resasplit 6778 fresaun 6779 fresaunres2 6780 residpr 7162 fpr 7173 sbthlem5 9125 1sdomOLD 9282 djuassen 10216 fz0to3un2pr 13665 fz0to4untppr 13666 fz0to5un2tp 13667 fzo0to42pr 13788 hashgval 14368 hashinf 14370 relexpcnv 15070 bpoly3 16090 vdwlem6 17019 setsres 17211 lefld 18649 opsrtoslem1 22096 volun 25593 nosupcbv 27761 noinfcbv 27776 lrold 27949 addsval2 28010 addscut 28025 addsunif 28049 addsbday 28064 mulsval2 28151 muls01 28152 mulsproplem2 28157 mulsproplem3 28158 mulsproplem4 28159 mulscut 28172 mulsunif 28190 addsdilem1 28191 addsdilem2 28192 mulsasslem1 28203 mulsasslem2 28204 mulsunif2 28210 precsexlemcbv 28244 onaddscl 28300 onmulscl 28301 n0scut 28352 1p1e2s 28414 nohalf 28421 ex-dif 30451 ex-in 30453 ex-pw 30457 ex-xp 30464 ex-cnv 30465 ex-rn 30468 fzodif1 32800 ordtprsuni 33879 indval2 33994 sigaclfu2 34101 eulerpartgbij 34353 subfacp1lem1 35163 subfacp1lem5 35168 fmla1 35371 fixun 35890 refssfne 36340 onint1 36431 bj-pr1un 36985 bj-pr21val 36995 bj-pr2un 36999 bj-pr22val 37001 poimirlem16 37622 poimirlem19 37625 itg2addnclem2 37658 iblabsnclem 37669 redvmptabs 42368 df3o3 43303 rclexi 43604 rtrclex 43606 cnvrcl0 43614 dfrtrcl5 43618 dfrcl2 43663 dfrcl4 43665 iunrelexp0 43691 relexpiidm 43693 corclrcl 43696 relexp01min 43702 corcltrcl 43728 cotrclrcl 43731 frege131d 43753 rnfdmpr 47230 31prm 47521 |
Copyright terms: Public domain | W3C validator |