| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 4114 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 |
| This theorem is referenced by: indir 4237 difundir 4242 difindi 4243 dfsymdif3 4257 unrab 4266 rabun2 4275 elnelun 4344 dfif6 4479 dfif3 4491 dfif5 4493 symdif0 5034 symdifid 5036 unopab 5172 xpundi 5688 xpundir 5689 xpun 5693 dmun 5853 resundi 5944 resundir 5945 cnvun 6091 rnun 6094 imaundi 6098 imaundir 6099 dmtpop 6167 coundi 6196 coundir 6197 unidmrn 6227 dfdm2 6229 predun 6276 mptun 6628 partfun 6629 resasplit 6694 fresaun 6695 fresaunres2 6696 residpr 7077 fpr 7088 sbthlem5 9008 djuassen 10073 fz0to3un2pr 13532 fz0to4untppr 13533 fz0to5un2tp 13534 fzo0to42pr 13656 hashgval 14240 hashinf 14242 relexpcnv 14942 bpoly3 15965 vdwlem6 16898 setsres 17089 lefld 18498 opsrtoslem1 21960 volun 25444 nosupcbv 27612 noinfcbv 27627 lrold 27811 addsval2 27875 addscut 27890 addsunif 27914 addsbday 27929 mulsval2 28019 muls01 28020 mulsproplem2 28025 mulsproplem3 28026 mulsproplem4 28027 mulscut 28040 mulsunif 28058 addsdilem1 28059 addsdilem2 28060 mulsasslem1 28071 mulsasslem2 28072 mulsunif2 28078 precsexlemcbv 28113 onaddscl 28179 onmulscl 28180 n0scut 28231 1p1e2s 28308 twocut 28315 ex-dif 30367 ex-in 30369 ex-pw 30373 ex-xp 30380 ex-cnv 30381 ex-rn 30384 fzodif1 32736 indval2 32798 ordtprsuni 33892 sigaclfu2 34094 eulerpartgbij 34346 subfacp1lem1 35162 subfacp1lem5 35167 fmla1 35370 fixun 35893 refssfne 36342 onint1 36433 bj-pr1un 36987 bj-pr21val 36997 bj-pr2un 37001 bj-pr22val 37003 poimirlem16 37626 poimirlem19 37629 itg2addnclem2 37662 iblabsnclem 37673 redvmptabs 42343 df3o3 43297 rclexi 43598 rtrclex 43600 cnvrcl0 43608 dfrtrcl5 43612 dfrcl2 43657 dfrcl4 43659 iunrelexp0 43685 relexpiidm 43687 corclrcl 43690 relexp01min 43696 corcltrcl 43722 cotrclrcl 43725 frege131d 43747 rnfdmpr 47275 31prm 47591 |
| Copyright terms: Public domain | W3C validator |