| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 4138 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 |
| This theorem is referenced by: indir 4261 difundir 4266 difindi 4267 dfsymdif3 4281 unrab 4290 rabun2 4299 elnelun 4368 dfif6 4503 dfif3 4515 dfif5 4517 symdif0 5061 symdifid 5063 unopab 5200 xpundi 5723 xpundir 5724 xpun 5728 dmun 5890 resundi 5980 resundir 5981 cnvun 6131 rnun 6134 imaundi 6138 imaundir 6139 dmtpop 6207 coundi 6236 coundir 6237 unidmrn 6268 dfdm2 6270 predun 6317 mptun 6684 partfun 6685 resasplit 6748 fresaun 6749 fresaunres2 6750 residpr 7133 fpr 7144 sbthlem5 9101 1sdomOLD 9257 djuassen 10193 fz0to3un2pr 13646 fz0to4untppr 13647 fz0to5un2tp 13648 fzo0to42pr 13769 hashgval 14351 hashinf 14353 relexpcnv 15054 bpoly3 16074 vdwlem6 17006 setsres 17197 lefld 18602 opsrtoslem1 22013 volun 25498 nosupcbv 27666 noinfcbv 27681 lrold 27860 addsval2 27922 addscut 27937 addsunif 27961 addsbday 27976 mulsval2 28066 muls01 28067 mulsproplem2 28072 mulsproplem3 28073 mulsproplem4 28074 mulscut 28087 mulsunif 28105 addsdilem1 28106 addsdilem2 28107 mulsasslem1 28118 mulsasslem2 28119 mulsunif2 28125 precsexlemcbv 28160 onaddscl 28226 onmulscl 28227 n0scut 28278 1p1e2s 28354 twocut 28361 ex-dif 30404 ex-in 30406 ex-pw 30410 ex-xp 30417 ex-cnv 30418 ex-rn 30421 fzodif1 32769 indval2 32831 ordtprsuni 33950 sigaclfu2 34152 eulerpartgbij 34404 subfacp1lem1 35201 subfacp1lem5 35206 fmla1 35409 fixun 35927 refssfne 36376 onint1 36467 bj-pr1un 37021 bj-pr21val 37031 bj-pr2un 37035 bj-pr22val 37037 poimirlem16 37660 poimirlem19 37663 itg2addnclem2 37696 iblabsnclem 37707 redvmptabs 42403 df3o3 43338 rclexi 43639 rtrclex 43641 cnvrcl0 43649 dfrtrcl5 43653 dfrcl2 43698 dfrcl4 43700 iunrelexp0 43726 relexpiidm 43728 corclrcl 43731 relexp01min 43737 corcltrcl 43763 cotrclrcl 43766 frege131d 43788 rnfdmpr 47310 31prm 47611 |
| Copyright terms: Public domain | W3C validator |