| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 4110 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: indir 4233 difundir 4238 difindi 4239 dfsymdif3 4253 unrab 4262 rabun2 4271 elnelun 4340 dfif6 4475 dfif3 4487 dfif5 4489 symdif0 5031 symdifid 5033 unopab 5169 xpundi 5683 xpundir 5684 xpun 5688 dmun 5849 resundi 5941 resundir 5942 cnvun 6089 rnun 6092 imaundi 6096 imaundir 6097 dmtpop 6165 coundi 6194 coundir 6195 unidmrn 6226 dfdm2 6228 predun 6275 mptun 6627 partfun 6628 resasplit 6693 fresaun 6694 fresaunres2 6695 residpr 7076 fpr 7087 sbthlem5 9004 djuassen 10070 fz0to3un2pr 13529 fz0to4untppr 13530 fz0to5un2tp 13531 fzo0to42pr 13653 hashgval 14240 hashinf 14242 relexpcnv 14942 bpoly3 15965 vdwlem6 16898 setsres 17089 lefld 18498 opsrtoslem1 21990 volun 25473 nosupcbv 27641 noinfcbv 27656 lrold 27842 addsval2 27906 addscut 27921 addsunif 27945 addsbday 27960 mulsval2 28050 muls01 28051 mulsproplem2 28056 mulsproplem3 28057 mulsproplem4 28058 mulscut 28071 mulsunif 28089 addsdilem1 28090 addsdilem2 28091 mulsasslem1 28102 mulsasslem2 28103 mulsunif2 28109 precsexlemcbv 28144 onaddscl 28210 onmulscl 28211 n0scut 28262 1p1e2s 28339 twocut 28346 ex-dif 30403 ex-in 30405 ex-pw 30409 ex-xp 30416 ex-cnv 30417 ex-rn 30420 fzodif1 32775 indval2 32835 ordtprsuni 33932 sigaclfu2 34134 eulerpartgbij 34385 subfacp1lem1 35223 subfacp1lem5 35228 fmla1 35431 fixun 35951 refssfne 36402 onint1 36493 bj-pr1un 37047 bj-pr21val 37057 bj-pr2un 37061 bj-pr22val 37063 poimirlem16 37686 poimirlem19 37689 itg2addnclem2 37722 iblabsnclem 37733 dfsucmap3 38486 redvmptabs 42463 df3o3 43417 rclexi 43718 rtrclex 43720 cnvrcl0 43728 dfrtrcl5 43732 dfrcl2 43777 dfrcl4 43779 iunrelexp0 43805 relexpiidm 43807 corclrcl 43810 relexp01min 43816 corcltrcl 43842 cotrclrcl 43845 frege131d 43867 rnfdmpr 47391 31prm 47707 |
| Copyright terms: Public domain | W3C validator |