![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4159 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 |
This theorem is referenced by: indir 4276 difundir 4281 difindi 4282 dfsymdif3 4297 unrab 4306 rabun2 4314 elnelun 4390 dfif6 4532 dfif3 4543 dfif5 4545 symdif0 5089 symdifid 5091 unopab 5231 xpundi 5745 xpundir 5746 xpun 5750 dmun 5911 resundi 5996 resundir 5997 cnvun 6143 rnun 6146 imaundi 6150 imaundir 6151 dmtpop 6218 coundi 6247 coundir 6248 unidmrn 6279 dfdm2 6281 predun 6330 mptun 6697 partfun 6698 resasplit 6762 fresaun 6763 fresaunres2 6764 residpr 7141 fpr 7152 sbthlem5 9087 1sdomOLD 9249 djuassen 10173 fz0to3un2pr 13603 fz0to4untppr 13604 fzo0to42pr 13719 hashgval 14293 hashinf 14295 relexpcnv 14982 bpoly3 16002 vdwlem6 16919 setsres 17111 lefld 18545 opsrtoslem1 21616 volun 25062 nosupcbv 27205 noinfcbv 27220 lrold 27391 addsval2 27447 addscut 27462 addsunif 27485 mulsval2 27567 muls01 27568 mulsproplem2 27573 mulsproplem3 27574 mulsproplem4 27575 mulscut 27588 mulsunif 27605 addsdilem1 27606 addsdilem2 27607 mulsasslem1 27618 mulsasslem2 27619 precsexlemcbv 27652 ex-dif 29676 ex-in 29678 ex-pw 29682 ex-xp 29689 ex-cnv 29690 ex-rn 29693 fzodif1 32004 ordtprsuni 32899 indval2 33012 sigaclfu2 33119 eulerpartgbij 33371 subfacp1lem1 34170 subfacp1lem5 34175 fmla1 34378 fixun 34881 refssfne 35243 onint1 35334 bj-pr1un 35884 bj-pr21val 35894 bj-pr2un 35898 bj-pr22val 35900 poimirlem16 36504 poimirlem19 36507 itg2addnclem2 36540 iblabsnclem 36551 df3o3 42064 rclexi 42366 rtrclex 42368 cnvrcl0 42376 dfrtrcl5 42380 dfrcl2 42425 dfrcl4 42427 iunrelexp0 42453 relexpiidm 42455 corclrcl 42458 relexp01min 42464 corcltrcl 42490 cotrclrcl 42493 frege131d 42515 rnfdmpr 45989 31prm 46265 |
Copyright terms: Public domain | W3C validator |