| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 4126 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 |
| This theorem is referenced by: indir 4249 difundir 4254 difindi 4255 dfsymdif3 4269 unrab 4278 rabun2 4287 elnelun 4356 dfif6 4491 dfif3 4503 dfif5 4505 symdif0 5049 symdifid 5051 unopab 5187 xpundi 5707 xpundir 5708 xpun 5712 dmun 5874 resundi 5964 resundir 5965 cnvun 6115 rnun 6118 imaundi 6122 imaundir 6123 dmtpop 6191 coundi 6220 coundir 6221 unidmrn 6252 dfdm2 6254 predun 6301 mptun 6664 partfun 6665 resasplit 6730 fresaun 6731 fresaunres2 6732 residpr 7115 fpr 7126 sbthlem5 9055 1sdomOLD 9196 djuassen 10132 fz0to3un2pr 13590 fz0to4untppr 13591 fz0to5un2tp 13592 fzo0to42pr 13714 hashgval 14298 hashinf 14300 relexpcnv 15001 bpoly3 16024 vdwlem6 16957 setsres 17148 lefld 18551 opsrtoslem1 21962 volun 25446 nosupcbv 27614 noinfcbv 27629 lrold 27808 addsval2 27870 addscut 27885 addsunif 27909 addsbday 27924 mulsval2 28014 muls01 28015 mulsproplem2 28020 mulsproplem3 28021 mulsproplem4 28022 mulscut 28035 mulsunif 28053 addsdilem1 28054 addsdilem2 28055 mulsasslem1 28066 mulsasslem2 28067 mulsunif2 28073 precsexlemcbv 28108 onaddscl 28174 onmulscl 28175 n0scut 28226 1p1e2s 28302 twocut 28309 ex-dif 30352 ex-in 30354 ex-pw 30358 ex-xp 30365 ex-cnv 30366 ex-rn 30369 fzodif1 32715 indval2 32777 ordtprsuni 33909 sigaclfu2 34111 eulerpartgbij 34363 subfacp1lem1 35166 subfacp1lem5 35171 fmla1 35374 fixun 35897 refssfne 36346 onint1 36437 bj-pr1un 36991 bj-pr21val 37001 bj-pr2un 37005 bj-pr22val 37007 poimirlem16 37630 poimirlem19 37633 itg2addnclem2 37666 iblabsnclem 37677 redvmptabs 42348 df3o3 43303 rclexi 43604 rtrclex 43606 cnvrcl0 43614 dfrtrcl5 43618 dfrcl2 43663 dfrcl4 43665 iunrelexp0 43691 relexpiidm 43693 corclrcl 43696 relexp01min 43702 corcltrcl 43728 cotrclrcl 43731 frege131d 43753 rnfdmpr 47282 31prm 47598 |
| Copyright terms: Public domain | W3C validator |