![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4157 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3952 |
This theorem is referenced by: indir 4274 difundir 4279 difindi 4280 dfsymdif3 4295 unrab 4304 rabun2 4312 elnelun 4388 dfif6 4530 dfif3 4541 dfif5 4543 symdif0 5087 symdifid 5089 unopab 5229 xpundi 5743 xpundir 5744 xpun 5748 dmun 5909 resundi 5994 resundir 5995 cnvun 6141 rnun 6144 imaundi 6148 imaundir 6149 dmtpop 6216 coundi 6245 coundir 6246 unidmrn 6277 dfdm2 6279 predun 6328 mptun 6695 partfun 6696 resasplit 6760 fresaun 6761 fresaunres2 6762 residpr 7142 fpr 7153 sbthlem5 9089 1sdomOLD 9251 djuassen 10175 fz0to3un2pr 13607 fz0to4untppr 13608 fzo0to42pr 13723 hashgval 14297 hashinf 14299 relexpcnv 14986 bpoly3 16006 vdwlem6 16923 setsres 17115 lefld 18549 opsrtoslem1 21835 volun 25294 nosupcbv 27441 noinfcbv 27456 lrold 27628 addsval2 27685 addscut 27700 addsunif 27724 mulsval2 27806 muls01 27807 mulsproplem2 27812 mulsproplem3 27813 mulsproplem4 27814 mulscut 27827 mulsunif 27844 addsdilem1 27845 addsdilem2 27846 mulsasslem1 27857 mulsasslem2 27858 precsexlemcbv 27891 n0scut 27943 ex-dif 29943 ex-in 29945 ex-pw 29949 ex-xp 29956 ex-cnv 29957 ex-rn 29960 fzodif1 32271 ordtprsuni 33197 indval2 33310 sigaclfu2 33417 eulerpartgbij 33669 subfacp1lem1 34468 subfacp1lem5 34473 fmla1 34676 fixun 35185 refssfne 35546 onint1 35637 bj-pr1un 36187 bj-pr21val 36197 bj-pr2un 36201 bj-pr22val 36203 poimirlem16 36807 poimirlem19 36810 itg2addnclem2 36843 iblabsnclem 36854 df3o3 42366 rclexi 42668 rtrclex 42670 cnvrcl0 42678 dfrtrcl5 42682 dfrcl2 42727 dfrcl4 42729 iunrelexp0 42755 relexpiidm 42757 corclrcl 42760 relexp01min 42766 corcltrcl 42792 cotrclrcl 42795 frege131d 42817 rnfdmpr 46287 31prm 46563 |
Copyright terms: Public domain | W3C validator |