| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 4129 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 |
| This theorem is referenced by: indir 4252 difundir 4257 difindi 4258 dfsymdif3 4272 unrab 4281 rabun2 4290 elnelun 4359 dfif6 4494 dfif3 4506 dfif5 4508 symdif0 5052 symdifid 5054 unopab 5190 xpundi 5710 xpundir 5711 xpun 5715 dmun 5877 resundi 5967 resundir 5968 cnvun 6118 rnun 6121 imaundi 6125 imaundir 6126 dmtpop 6194 coundi 6223 coundir 6224 unidmrn 6255 dfdm2 6257 predun 6304 mptun 6667 partfun 6668 resasplit 6733 fresaun 6734 fresaunres2 6735 residpr 7118 fpr 7129 sbthlem5 9061 1sdomOLD 9203 djuassen 10139 fz0to3un2pr 13597 fz0to4untppr 13598 fz0to5un2tp 13599 fzo0to42pr 13721 hashgval 14305 hashinf 14307 relexpcnv 15008 bpoly3 16031 vdwlem6 16964 setsres 17155 lefld 18558 opsrtoslem1 21969 volun 25453 nosupcbv 27621 noinfcbv 27636 lrold 27815 addsval2 27877 addscut 27892 addsunif 27916 addsbday 27931 mulsval2 28021 muls01 28022 mulsproplem2 28027 mulsproplem3 28028 mulsproplem4 28029 mulscut 28042 mulsunif 28060 addsdilem1 28061 addsdilem2 28062 mulsasslem1 28073 mulsasslem2 28074 mulsunif2 28080 precsexlemcbv 28115 onaddscl 28181 onmulscl 28182 n0scut 28233 1p1e2s 28309 twocut 28316 ex-dif 30359 ex-in 30361 ex-pw 30365 ex-xp 30372 ex-cnv 30373 ex-rn 30376 fzodif1 32722 indval2 32784 ordtprsuni 33916 sigaclfu2 34118 eulerpartgbij 34370 subfacp1lem1 35173 subfacp1lem5 35178 fmla1 35381 fixun 35904 refssfne 36353 onint1 36444 bj-pr1un 36998 bj-pr21val 37008 bj-pr2un 37012 bj-pr22val 37014 poimirlem16 37637 poimirlem19 37640 itg2addnclem2 37673 iblabsnclem 37684 redvmptabs 42355 df3o3 43310 rclexi 43611 rtrclex 43613 cnvrcl0 43621 dfrtrcl5 43625 dfrcl2 43670 dfrcl4 43672 iunrelexp0 43698 relexpiidm 43700 corclrcl 43703 relexp01min 43709 corcltrcl 43735 cotrclrcl 43738 frege131d 43760 rnfdmpr 47286 31prm 47602 |
| Copyright terms: Public domain | W3C validator |