| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| uneq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | uneq12 4122 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: indir 4245 difundir 4250 difindi 4251 dfsymdif3 4265 unrab 4274 rabun2 4283 elnelun 4352 dfif6 4487 dfif3 4499 dfif5 4501 symdif0 5044 symdifid 5046 unopab 5182 xpundi 5700 xpundir 5701 xpun 5705 dmun 5864 resundi 5953 resundir 5954 cnvun 6103 rnun 6106 imaundi 6110 imaundir 6111 dmtpop 6179 coundi 6208 coundir 6209 unidmrn 6240 dfdm2 6242 predun 6289 mptun 6646 partfun 6647 resasplit 6712 fresaun 6713 fresaunres2 6714 residpr 7097 fpr 7108 sbthlem5 9032 1sdomOLD 9172 djuassen 10108 fz0to3un2pr 13566 fz0to4untppr 13567 fz0to5un2tp 13568 fzo0to42pr 13690 hashgval 14274 hashinf 14276 relexpcnv 14977 bpoly3 16000 vdwlem6 16933 setsres 17124 lefld 18533 opsrtoslem1 21995 volun 25479 nosupcbv 27647 noinfcbv 27662 lrold 27846 addsval2 27910 addscut 27925 addsunif 27949 addsbday 27964 mulsval2 28054 muls01 28055 mulsproplem2 28060 mulsproplem3 28061 mulsproplem4 28062 mulscut 28075 mulsunif 28093 addsdilem1 28094 addsdilem2 28095 mulsasslem1 28106 mulsasslem2 28107 mulsunif2 28113 precsexlemcbv 28148 onaddscl 28214 onmulscl 28215 n0scut 28266 1p1e2s 28343 twocut 28350 ex-dif 30402 ex-in 30404 ex-pw 30408 ex-xp 30415 ex-cnv 30416 ex-rn 30419 fzodif1 32765 indval2 32827 ordtprsuni 33902 sigaclfu2 34104 eulerpartgbij 34356 subfacp1lem1 35159 subfacp1lem5 35164 fmla1 35367 fixun 35890 refssfne 36339 onint1 36430 bj-pr1un 36984 bj-pr21val 36994 bj-pr2un 36998 bj-pr22val 37000 poimirlem16 37623 poimirlem19 37626 itg2addnclem2 37659 iblabsnclem 37670 redvmptabs 42341 df3o3 43296 rclexi 43597 rtrclex 43599 cnvrcl0 43607 dfrtrcl5 43611 dfrcl2 43656 dfrcl4 43658 iunrelexp0 43684 relexpiidm 43686 corclrcl 43689 relexp01min 43695 corcltrcl 43721 cotrclrcl 43724 frege131d 43746 rnfdmpr 47275 31prm 47591 |
| Copyright terms: Public domain | W3C validator |