Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq12i | Structured version Visualization version GIF version |
Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
uneq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
uneq12i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | uneq12 4103 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-un 3902 |
This theorem is referenced by: indir 4220 difundir 4225 difindi 4226 dfsymdif3 4241 unrab 4250 rabun2 4258 elnelun 4334 dfif6 4474 dfif3 4485 dfif5 4487 symdif0 5027 symdifid 5029 unopab 5169 xpundi 5673 xpundir 5674 xpun 5678 dmun 5839 resundi 5924 resundir 5925 cnvun 6068 rnun 6071 imaundi 6075 imaundir 6076 dmtpop 6143 coundi 6172 coundir 6173 unidmrn 6204 dfdm2 6206 predun 6253 mptun 6616 partfun 6617 resasplit 6681 fresaun 6682 fresaunres2 6683 residpr 7054 fpr 7065 sbthlem5 8929 1sdomOLD 9091 djuassen 10007 fz0to3un2pr 13431 fz0to4untppr 13432 fzo0to42pr 13547 hashgval 14120 hashinf 14122 relexpcnv 14818 bpoly3 15840 vdwlem6 16757 setsres 16949 lefld 18380 opsrtoslem1 21334 volun 24781 ex-dif 28896 ex-in 28898 ex-pw 28902 ex-xp 28909 ex-cnv 28910 ex-rn 28913 fzodif1 31222 ordtprsuni 31975 indval2 32088 sigaclfu2 32195 eulerpartgbij 32445 subfacp1lem1 33246 subfacp1lem5 33251 fmla1 33454 nosupcbv 33963 noinfcbv 33978 lrold 34135 fixun 34269 refssfne 34605 onint1 34696 bj-pr1un 35249 bj-pr21val 35259 bj-pr2un 35263 bj-pr22val 35265 poimirlem16 35849 poimirlem19 35852 itg2addnclem2 35885 iblabsnclem 35896 rclexi 41444 rtrclex 41446 cnvrcl0 41454 dfrtrcl5 41458 dfrcl2 41503 dfrcl4 41505 iunrelexp0 41531 relexpiidm 41533 corclrcl 41536 relexp01min 41542 corcltrcl 41568 cotrclrcl 41571 frege131d 41593 df3o3 41856 rnfdmpr 45025 31prm 45301 |
Copyright terms: Public domain | W3C validator |