![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preddif | Structured version Visualization version GIF version |
Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011.) |
Ref | Expression |
---|---|
preddif | ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdir 4142 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∖ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
2 | df-pred 5980 | . 2 ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑋})) | |
3 | df-pred 5980 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
4 | df-pred 5980 | . . 3 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
5 | 3, 4 | difeq12i 3983 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∖ (𝐵 ∩ (◡𝑅 “ {𝑋}))) |
6 | 1, 2, 5 | 3eqtr4i 2806 | 1 ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∖ cdif 3822 ∩ cin 3824 {csn 4435 ◡ccnv 5399 “ cima 5403 Predcpred 5979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rab 3091 df-v 3411 df-dif 3828 df-in 3832 df-pred 5980 |
This theorem is referenced by: wfrlem8 7759 frrlem13 32596 |
Copyright terms: Public domain | W3C validator |