Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preddif | Structured version Visualization version GIF version |
Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011.) |
Ref | Expression |
---|---|
preddif | ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdir 4215 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∖ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
2 | df-pred 6191 | . 2 ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑋})) | |
3 | df-pred 6191 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
4 | df-pred 6191 | . . 3 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
5 | 3, 4 | difeq12i 4051 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∖ (𝐵 ∩ (◡𝑅 “ {𝑋}))) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∩ cin 3882 {csn 4558 ◡ccnv 5579 “ cima 5583 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-pred 6191 |
This theorem is referenced by: frrlem13 8085 wfrlem8OLD 8118 |
Copyright terms: Public domain | W3C validator |