MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preddif Structured version   Visualization version   GIF version

Theorem preddif 6232
Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011.)
Assertion
Ref Expression
preddif Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem preddif
StepHypRef Expression
1 indifdir 4218 . 2 ((𝐴𝐵) ∩ (𝑅 “ {𝑋})) = ((𝐴 ∩ (𝑅 “ {𝑋})) ∖ (𝐵 ∩ (𝑅 “ {𝑋})))
2 df-pred 6202 . 2 Pred(𝑅, (𝐴𝐵), 𝑋) = ((𝐴𝐵) ∩ (𝑅 “ {𝑋}))
3 df-pred 6202 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
4 df-pred 6202 . . 3 Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (𝑅 “ {𝑋}))
53, 4difeq12i 4055 . 2 (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) = ((𝐴 ∩ (𝑅 “ {𝑋})) ∖ (𝐵 ∩ (𝑅 “ {𝑋})))
61, 2, 53eqtr4i 2776 1 Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cin 3886  {csn 4561  ccnv 5588  cima 5592  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-pred 6202
This theorem is referenced by:  frrlem13  8114  wfrlem8OLD  8147
  Copyright terms: Public domain W3C validator