| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preddif | Structured version Visualization version GIF version | ||
| Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011.) |
| Ref | Expression |
|---|---|
| preddif | ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indifdir 4295 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∖ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
| 2 | df-pred 6321 | . 2 ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = ((𝐴 ∖ 𝐵) ∩ (◡𝑅 “ {𝑋})) | |
| 3 | df-pred 6321 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 4 | df-pred 6321 | . . 3 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
| 5 | 3, 4 | difeq12i 4124 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∖ (𝐵 ∩ (◡𝑅 “ {𝑋}))) |
| 6 | 1, 2, 5 | 3eqtr4i 2775 | 1 ⊢ Pred(𝑅, (𝐴 ∖ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3948 ∩ cin 3950 {csn 4626 ◡ccnv 5684 “ cima 5688 Predcpred 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-pred 6321 |
| This theorem is referenced by: frrlem13 8323 wfrlem8OLD 8356 |
| Copyright terms: Public domain | W3C validator |