MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4209
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4207 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4135 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4135 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4135 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4095 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2776 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-un 3892  df-in 3894
This theorem is referenced by:  difundir  4214  undisj1  4395  disjpr2  4649  resundir  5906  predun  6231  djuassen  9934  fin23lem26  10081  fpwwe2lem12  10398  neitr  22331  fiuncmp  22555  connsuba  22571  trfil2  23038  tsmsres  23295  trust  23381  restmetu  23726  volun  24709  uniioombllem3  24749  itgsplitioo  25002  ppiprm  26300  chtprm  26302  chtdif  26307  ppidif  26312  cycpmco2f1  31391  carsgclctunlem1  32284  ballotlemfp1  32458  ballotlemgun  32491  mrsubvrs  33484  mthmpps  33544  fixun  34211  mbfposadd  35824  metakunt17  40141  metakunt21  40145  metakunt22  40146  metakunt24  40148  iunrelexp0  41310  31prm  45049
  Copyright terms: Public domain W3C validator