| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version | ||
| Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indi 4231 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
| 2 | incom 4156 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
| 3 | incom 4156 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
| 4 | incom 4156 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
| 5 | 3, 4 | uneq12i 4113 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
| 6 | 1, 2, 5 | 3eqtr4i 2764 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 |
| This theorem is referenced by: difundir 4238 undisj1 4409 disjpr2 4663 resundir 5942 predun 6275 djuassen 10070 fin23lem26 10216 fpwwe2lem12 10533 neitr 23095 fiuncmp 23319 connsuba 23335 trfil2 23802 tsmsres 24059 trust 24144 restmetu 24485 volun 25473 uniioombllem3 25513 itgsplitioo 25766 ppiprm 27088 chtprm 27090 chtdif 27095 ppidif 27100 cycpmco2f1 33093 carsgclctunlem1 34330 ballotlemfp1 34505 ballotlemgun 34538 mrsubvrs 35566 mthmpps 35626 fixun 35951 mbfposadd 37706 iunrelexp0 43794 31prm 47696 |
| Copyright terms: Public domain | W3C validator |