MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4276
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4274 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4202 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4202 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4202 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4162 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2768 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3947  cin 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-un 3954  df-in 3956
This theorem is referenced by:  difundir  4281  undisj1  4462  disjpr2  4718  resundir  5997  predun  6330  djuassen  10177  fin23lem26  10324  fpwwe2lem12  10641  neitr  22906  fiuncmp  23130  connsuba  23146  trfil2  23613  tsmsres  23870  trust  23956  restmetu  24301  volun  25296  uniioombllem3  25336  itgsplitioo  25589  ppiprm  26889  chtprm  26891  chtdif  26896  ppidif  26901  cycpmco2f1  32551  carsgclctunlem1  33612  ballotlemfp1  33786  ballotlemgun  33819  mrsubvrs  34809  mthmpps  34869  fixun  35183  mbfposadd  36840  metakunt17  41309  metakunt21  41313  metakunt22  41314  metakunt24  41316  iunrelexp0  42757  31prm  46565
  Copyright terms: Public domain W3C validator