![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 4273 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
2 | incom 4201 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
3 | incom 4201 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | incom 4201 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
5 | 3, 4 | uneq12i 4161 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2769 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3946 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-un 3953 df-in 3955 |
This theorem is referenced by: difundir 4280 undisj1 4461 disjpr2 4717 resundir 5996 predun 6329 djuassen 10179 fin23lem26 10326 fpwwe2lem12 10643 neitr 23004 fiuncmp 23228 connsuba 23244 trfil2 23711 tsmsres 23968 trust 24054 restmetu 24399 volun 25394 uniioombllem3 25434 itgsplitioo 25687 ppiprm 26996 chtprm 26998 chtdif 27003 ppidif 27008 cycpmco2f1 32719 carsgclctunlem1 33780 ballotlemfp1 33954 ballotlemgun 33987 mrsubvrs 34977 mthmpps 35037 fixun 35351 mbfposadd 36999 metakunt17 41468 metakunt21 41472 metakunt22 41473 metakunt24 41475 iunrelexp0 42916 31prm 46724 |
Copyright terms: Public domain | W3C validator |