| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version | ||
| Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indi 4243 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
| 2 | incom 4168 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
| 3 | incom 4168 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
| 4 | incom 4168 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
| 5 | 3, 4 | uneq12i 4125 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
| 6 | 1, 2, 5 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 |
| This theorem is referenced by: difundir 4250 undisj1 4421 disjpr2 4673 resundir 5954 predun 6289 djuassen 10108 fin23lem26 10254 fpwwe2lem12 10571 neitr 23100 fiuncmp 23324 connsuba 23340 trfil2 23807 tsmsres 24064 trust 24150 restmetu 24491 volun 25479 uniioombllem3 25519 itgsplitioo 25772 ppiprm 27094 chtprm 27096 chtdif 27101 ppidif 27106 cycpmco2f1 33096 carsgclctunlem1 34301 ballotlemfp1 34476 ballotlemgun 34509 mrsubvrs 35502 mthmpps 35562 fixun 35890 mbfposadd 37654 iunrelexp0 43684 31prm 47591 |
| Copyright terms: Public domain | W3C validator |