| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version | ||
| Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indi 4235 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
| 2 | incom 4160 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
| 3 | incom 4160 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
| 4 | incom 4160 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
| 5 | 3, 4 | uneq12i 4117 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
| 6 | 1, 2, 5 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3901 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 |
| This theorem is referenced by: difundir 4242 undisj1 4413 disjpr2 4665 resundir 5945 predun 6276 djuassen 10073 fin23lem26 10219 fpwwe2lem12 10536 neitr 23065 fiuncmp 23289 connsuba 23305 trfil2 23772 tsmsres 24029 trust 24115 restmetu 24456 volun 25444 uniioombllem3 25484 itgsplitioo 25737 ppiprm 27059 chtprm 27061 chtdif 27066 ppidif 27071 cycpmco2f1 33067 carsgclctunlem1 34291 ballotlemfp1 34466 ballotlemgun 34499 mrsubvrs 35505 mthmpps 35565 fixun 35893 mbfposadd 37657 iunrelexp0 43685 31prm 47591 |
| Copyright terms: Public domain | W3C validator |