MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4252
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4250 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4175 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4175 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4175 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4132 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2763 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3915  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-un 3922  df-in 3924
This theorem is referenced by:  difundir  4257  undisj1  4428  disjpr2  4680  resundir  5968  predun  6304  djuassen  10139  fin23lem26  10285  fpwwe2lem12  10602  neitr  23074  fiuncmp  23298  connsuba  23314  trfil2  23781  tsmsres  24038  trust  24124  restmetu  24465  volun  25453  uniioombllem3  25493  itgsplitioo  25746  ppiprm  27068  chtprm  27070  chtdif  27075  ppidif  27080  cycpmco2f1  33088  carsgclctunlem1  34315  ballotlemfp1  34490  ballotlemgun  34523  mrsubvrs  35516  mthmpps  35576  fixun  35904  mbfposadd  37668  iunrelexp0  43698  31prm  47602
  Copyright terms: Public domain W3C validator