MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4245
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4243 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4168 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4168 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4168 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4125 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2762 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3909  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-un 3916  df-in 3918
This theorem is referenced by:  difundir  4250  undisj1  4421  disjpr2  4673  resundir  5954  predun  6289  djuassen  10108  fin23lem26  10254  fpwwe2lem12  10571  neitr  23100  fiuncmp  23324  connsuba  23340  trfil2  23807  tsmsres  24064  trust  24150  restmetu  24491  volun  25479  uniioombllem3  25519  itgsplitioo  25772  ppiprm  27094  chtprm  27096  chtdif  27101  ppidif  27106  cycpmco2f1  33096  carsgclctunlem1  34301  ballotlemfp1  34476  ballotlemgun  34509  mrsubvrs  35502  mthmpps  35562  fixun  35890  mbfposadd  37654  iunrelexp0  43684  31prm  47591
  Copyright terms: Public domain W3C validator