Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 4204 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
2 | incom 4131 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
3 | incom 4131 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | incom 4131 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
5 | 3, 4 | uneq12i 4091 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 |
This theorem is referenced by: difundir 4211 undisj1 4392 disjpr2 4646 resundir 5895 predun 6220 djuassen 9865 fin23lem26 10012 fpwwe2lem12 10329 neitr 22239 fiuncmp 22463 connsuba 22479 trfil2 22946 tsmsres 23203 trust 23289 restmetu 23632 volun 24614 uniioombllem3 24654 itgsplitioo 24907 ppiprm 26205 chtprm 26207 chtdif 26212 ppidif 26217 cycpmco2f1 31293 carsgclctunlem1 32184 ballotlemfp1 32358 ballotlemgun 32391 mrsubvrs 33384 mthmpps 33444 fixun 34138 mbfposadd 35751 metakunt17 40069 metakunt21 40073 metakunt22 40074 metakunt24 40076 iunrelexp0 41199 31prm 44937 |
Copyright terms: Public domain | W3C validator |