MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4237
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4235 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4160 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4160 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4160 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4117 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2762 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3901  cin 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-un 3908  df-in 3910
This theorem is referenced by:  difundir  4242  undisj1  4413  disjpr2  4665  resundir  5945  predun  6276  djuassen  10073  fin23lem26  10219  fpwwe2lem12  10536  neitr  23065  fiuncmp  23289  connsuba  23305  trfil2  23772  tsmsres  24029  trust  24115  restmetu  24456  volun  25444  uniioombllem3  25484  itgsplitioo  25737  ppiprm  27059  chtprm  27061  chtdif  27066  ppidif  27071  cycpmco2f1  33067  carsgclctunlem1  34291  ballotlemfp1  34466  ballotlemgun  34499  mrsubvrs  35505  mthmpps  35565  fixun  35893  mbfposadd  37657  iunrelexp0  43685  31prm  47591
  Copyright terms: Public domain W3C validator