Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 4207 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
2 | incom 4135 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
3 | incom 4135 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | incom 4135 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
5 | 3, 4 | uneq12i 4095 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-in 3894 |
This theorem is referenced by: difundir 4214 undisj1 4395 disjpr2 4649 resundir 5906 predun 6231 djuassen 9934 fin23lem26 10081 fpwwe2lem12 10398 neitr 22331 fiuncmp 22555 connsuba 22571 trfil2 23038 tsmsres 23295 trust 23381 restmetu 23726 volun 24709 uniioombllem3 24749 itgsplitioo 25002 ppiprm 26300 chtprm 26302 chtdif 26307 ppidif 26312 cycpmco2f1 31391 carsgclctunlem1 32284 ballotlemfp1 32458 ballotlemgun 32491 mrsubvrs 33484 mthmpps 33544 fixun 34211 mbfposadd 35824 metakunt17 40141 metakunt21 40145 metakunt22 40146 metakunt24 40148 iunrelexp0 41310 31prm 45049 |
Copyright terms: Public domain | W3C validator |