![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indir | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
indir | ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 4289 | . 2 ⊢ (𝐶 ∩ (𝐴 ∪ 𝐵)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) | |
2 | incom 4216 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∪ 𝐵)) | |
3 | incom 4216 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | incom 4216 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
5 | 3, 4 | uneq12i 4175 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2772 | 1 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∪ cun 3960 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-un 3967 df-in 3969 |
This theorem is referenced by: difundir 4296 undisj1 4467 disjpr2 4717 resundir 6014 predun 6350 djuassen 10216 fin23lem26 10362 fpwwe2lem12 10679 neitr 23203 fiuncmp 23427 connsuba 23443 trfil2 23910 tsmsres 24167 trust 24253 restmetu 24598 volun 25593 uniioombllem3 25633 itgsplitioo 25887 ppiprm 27208 chtprm 27210 chtdif 27215 ppidif 27220 cycpmco2f1 33126 carsgclctunlem1 34298 ballotlemfp1 34472 ballotlemgun 34505 mrsubvrs 35506 mthmpps 35566 fixun 35890 mbfposadd 37653 metakunt17 42202 metakunt21 42206 metakunt22 42207 metakunt24 42209 iunrelexp0 43691 31prm 47521 |
Copyright terms: Public domain | W3C validator |