MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4305
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4303 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4230 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4230 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4230 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4189 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2778 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3974  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-un 3981  df-in 3983
This theorem is referenced by:  difundir  4310  undisj1  4485  disjpr2  4738  resundir  6024  predun  6360  djuassen  10248  fin23lem26  10394  fpwwe2lem12  10711  neitr  23209  fiuncmp  23433  connsuba  23449  trfil2  23916  tsmsres  24173  trust  24259  restmetu  24604  volun  25599  uniioombllem3  25639  itgsplitioo  25893  ppiprm  27212  chtprm  27214  chtdif  27219  ppidif  27224  cycpmco2f1  33117  carsgclctunlem1  34282  ballotlemfp1  34456  ballotlemgun  34489  mrsubvrs  35490  mthmpps  35550  fixun  35873  mbfposadd  37627  metakunt17  42178  metakunt21  42182  metakunt22  42183  metakunt24  42185  iunrelexp0  43664  31prm  47471
  Copyright terms: Public domain W3C validator