MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4206
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4204 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4131 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4131 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4131 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4091 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2776 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-un 3888  df-in 3890
This theorem is referenced by:  difundir  4211  undisj1  4392  disjpr2  4646  resundir  5895  predun  6220  djuassen  9865  fin23lem26  10012  fpwwe2lem12  10329  neitr  22239  fiuncmp  22463  connsuba  22479  trfil2  22946  tsmsres  23203  trust  23289  restmetu  23632  volun  24614  uniioombllem3  24654  itgsplitioo  24907  ppiprm  26205  chtprm  26207  chtdif  26212  ppidif  26217  cycpmco2f1  31293  carsgclctunlem1  32184  ballotlemfp1  32358  ballotlemgun  32391  mrsubvrs  33384  mthmpps  33444  fixun  34138  mbfposadd  35751  metakunt17  40069  metakunt21  40073  metakunt22  40074  metakunt24  40076  iunrelexp0  41199  31prm  44937
  Copyright terms: Public domain W3C validator