MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 4233
Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 4231 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 4156 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4156 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 4156 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 4113 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2764 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-un 3902  df-in 3904
This theorem is referenced by:  difundir  4238  undisj1  4409  disjpr2  4663  resundir  5942  predun  6275  djuassen  10070  fin23lem26  10216  fpwwe2lem12  10533  neitr  23095  fiuncmp  23319  connsuba  23335  trfil2  23802  tsmsres  24059  trust  24144  restmetu  24485  volun  25473  uniioombllem3  25513  itgsplitioo  25766  ppiprm  27088  chtprm  27090  chtdif  27095  ppidif  27100  cycpmco2f1  33093  carsgclctunlem1  34330  ballotlemfp1  34505  ballotlemgun  34538  mrsubvrs  35566  mthmpps  35626  fixun  35951  mbfposadd  37706  iunrelexp0  43794  31prm  47696
  Copyright terms: Public domain W3C validator