Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtex Structured version   Visualization version   GIF version

Theorem prtex 38846
Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtex (Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V))
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtex
StepHypRef Expression
1 prtlem18.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
21prter1 38845 . . 3 (Prt 𝐴 Er 𝐴)
3 erexb 8673 . . 3 ( Er 𝐴 → ( ∈ V ↔ 𝐴 ∈ V))
42, 3syl 17 . 2 (Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V))
5 uniexb 7720 . 2 (𝐴 ∈ V ↔ 𝐴 ∈ V)
64, 5bitr4di 289 1 (Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444   cuni 4867  {copab 5164   Er wer 8645  Prt wprt 38837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-er 8648  df-prt 38838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator