| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtex | Structured version Visualization version GIF version | ||
| Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem18.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| Ref | Expression |
|---|---|
| prtex | ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 2 | 1 | prter1 38872 | . . 3 ⊢ (Prt 𝐴 → ∼ Er ∪ 𝐴) |
| 3 | erexb 8696 | . . 3 ⊢ ( ∼ Er ∪ 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 5 | uniexb 7740 | . 2 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
| 6 | 4, 5 | bitr4di 289 | 1 ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∪ cuni 4871 {copab 5169 Er wer 8668 Prt wprt 38864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-er 8671 df-prt 38865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |