Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtex | Structured version Visualization version GIF version |
Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem18.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtex | ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
2 | 1 | prter1 36820 | . . 3 ⊢ (Prt 𝐴 → ∼ Er ∪ 𝐴) |
3 | erexb 8481 | . . 3 ⊢ ( ∼ Er ∪ 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V)) |
5 | uniexb 7592 | . 2 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
6 | 4, 5 | bitr4di 288 | 1 ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∪ cuni 4836 {copab 5132 Er wer 8453 Prt wprt 36812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-er 8456 df-prt 36813 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |