Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter3 Structured version   Visualization version   GIF version

Theorem prter3 38991
Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter3 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)   𝑆(𝑥,𝑦,𝑢)

Proof of Theorem prter3
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 8631 . . 3 (𝑆 Er 𝐴 → Rel 𝑆)
21adantr 480 . 2 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → Rel 𝑆)
3 prtlem18.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43relopabiv 5759 . . 3 Rel
53prtlem13 38977 . . . . . 6 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 simpll 766 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑆 Er 𝐴)
7 simprl 770 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣𝐴)
8 ne0i 4288 . . . . . . . . . . . . . . . 16 (𝑧𝑣𝑣 ≠ ∅)
98ad2antll 729 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ≠ ∅)
10 eldifsn 4735 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴 ∖ {∅}) ↔ (𝑣𝐴𝑣 ≠ ∅))
117, 9, 10sylanbrc 583 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ (𝐴 ∖ {∅}))
12 simplr 768 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))
1311, 12eleqtrrd 2834 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ ( 𝐴 / 𝑆))
14 simprr 772 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑧𝑣)
15 qsel 8720 . . . . . . . . . . . . 13 ((𝑆 Er 𝐴𝑣 ∈ ( 𝐴 / 𝑆) ∧ 𝑧𝑣) → 𝑣 = [𝑧]𝑆)
166, 13, 14, 15syl3anc 1373 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧]𝑆)
1716eleq2d 2817 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧]𝑆))
18 vex 3440 . . . . . . . . . . . 12 𝑤 ∈ V
19 vex 3440 . . . . . . . . . . . 12 𝑧 ∈ V
2018, 19elec 8668 . . . . . . . . . . 11 (𝑤 ∈ [𝑧]𝑆𝑧𝑆𝑤)
2117, 20bitrdi 287 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧𝑆𝑤))
2221anassrs 467 . . . . . . . . 9 ((((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) ∧ 𝑧𝑣) → (𝑤𝑣𝑧𝑆𝑤))
2322pm5.32da 579 . . . . . . . 8 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑆𝑤)))
2423rexbidva 3154 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
25 simpll 766 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑆 Er 𝐴)
26 simpr 484 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧𝑆𝑤)
2725, 26ercl 8633 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧 𝐴)
28 eluni2 4860 . . . . . . . . . . 11 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
2927, 28sylib 218 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → ∃𝑣𝐴 𝑧𝑣)
3029ex 412 . . . . . . . . 9 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 → ∃𝑣𝐴 𝑧𝑣))
3130pm4.71rd 562 . . . . . . . 8 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤)))
32 r19.41v 3162 . . . . . . . 8 (∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤) ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤))
3331, 32bitr4di 289 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
3424, 33bitr4d 282 . . . . . 6 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧𝑆𝑤))
355, 34bitrid 283 . . . . 5 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧 𝑤𝑧𝑆𝑤))
3635adantl 481 . . . 4 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → (𝑧 𝑤𝑧𝑆𝑤))
3736eqbrrdv2 38972 . . 3 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
384, 37mpanl1 700 . 2 ((Rel 𝑆 ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
392, 38mpancom 688 1 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3894  c0 4280  {csn 4573   cuni 4856   class class class wbr 5089  {copab 5151  Rel wrel 5619   Er wer 8619  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-er 8622  df-ec 8624  df-qs 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator