Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter3 Structured version   Visualization version   GIF version

Theorem prter3 36896
Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter3 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)   𝑆(𝑥,𝑦,𝑢)

Proof of Theorem prter3
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 8507 . . 3 (𝑆 Er 𝐴 → Rel 𝑆)
21adantr 481 . 2 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → Rel 𝑆)
3 prtlem18.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43relopabiv 5730 . . 3 Rel
53prtlem13 36882 . . . . . 6 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 simpll 764 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑆 Er 𝐴)
7 simprl 768 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣𝐴)
8 ne0i 4268 . . . . . . . . . . . . . . . 16 (𝑧𝑣𝑣 ≠ ∅)
98ad2antll 726 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ≠ ∅)
10 eldifsn 4720 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴 ∖ {∅}) ↔ (𝑣𝐴𝑣 ≠ ∅))
117, 9, 10sylanbrc 583 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ (𝐴 ∖ {∅}))
12 simplr 766 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))
1311, 12eleqtrrd 2842 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ ( 𝐴 / 𝑆))
14 simprr 770 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑧𝑣)
15 qsel 8585 . . . . . . . . . . . . 13 ((𝑆 Er 𝐴𝑣 ∈ ( 𝐴 / 𝑆) ∧ 𝑧𝑣) → 𝑣 = [𝑧]𝑆)
166, 13, 14, 15syl3anc 1370 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧]𝑆)
1716eleq2d 2824 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧]𝑆))
18 vex 3436 . . . . . . . . . . . 12 𝑤 ∈ V
19 vex 3436 . . . . . . . . . . . 12 𝑧 ∈ V
2018, 19elec 8542 . . . . . . . . . . 11 (𝑤 ∈ [𝑧]𝑆𝑧𝑆𝑤)
2117, 20bitrdi 287 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧𝑆𝑤))
2221anassrs 468 . . . . . . . . 9 ((((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) ∧ 𝑧𝑣) → (𝑤𝑣𝑧𝑆𝑤))
2322pm5.32da 579 . . . . . . . 8 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑆𝑤)))
2423rexbidva 3225 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
25 simpll 764 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑆 Er 𝐴)
26 simpr 485 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧𝑆𝑤)
2725, 26ercl 8509 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧 𝐴)
28 eluni2 4843 . . . . . . . . . . 11 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
2927, 28sylib 217 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → ∃𝑣𝐴 𝑧𝑣)
3029ex 413 . . . . . . . . 9 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 → ∃𝑣𝐴 𝑧𝑣))
3130pm4.71rd 563 . . . . . . . 8 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤)))
32 r19.41v 3276 . . . . . . . 8 (∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤) ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤))
3331, 32bitr4di 289 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
3424, 33bitr4d 281 . . . . . 6 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧𝑆𝑤))
355, 34syl5bb 283 . . . . 5 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧 𝑤𝑧𝑆𝑤))
3635adantl 482 . . . 4 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → (𝑧 𝑤𝑧𝑆𝑤))
3736eqbrrdv2 36877 . . 3 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
384, 37mpanl1 697 . 2 ((Rel 𝑆 ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
392, 38mpancom 685 1 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  {copab 5136  Rel wrel 5594   Er wer 8495  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-er 8498  df-ec 8500  df-qs 8504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator