Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter3 Structured version   Visualization version   GIF version

Theorem prter3 36022
Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter3 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)   𝑆(𝑥,𝑦,𝑢)

Proof of Theorem prter3
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 8301 . . 3 (𝑆 Er 𝐴 → Rel 𝑆)
21adantr 483 . 2 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → Rel 𝑆)
3 prtlem18.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43relopabi 5697 . . 3 Rel
53prtlem13 36008 . . . . . 6 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 simpll 765 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑆 Er 𝐴)
7 simprl 769 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣𝐴)
8 ne0i 4303 . . . . . . . . . . . . . . . 16 (𝑧𝑣𝑣 ≠ ∅)
98ad2antll 727 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ≠ ∅)
10 eldifsn 4722 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴 ∖ {∅}) ↔ (𝑣𝐴𝑣 ≠ ∅))
117, 9, 10sylanbrc 585 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ (𝐴 ∖ {∅}))
12 simplr 767 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))
1311, 12eleqtrrd 2919 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ ( 𝐴 / 𝑆))
14 simprr 771 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑧𝑣)
15 qsel 8379 . . . . . . . . . . . . 13 ((𝑆 Er 𝐴𝑣 ∈ ( 𝐴 / 𝑆) ∧ 𝑧𝑣) → 𝑣 = [𝑧]𝑆)
166, 13, 14, 15syl3anc 1367 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧]𝑆)
1716eleq2d 2901 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧]𝑆))
18 vex 3500 . . . . . . . . . . . 12 𝑤 ∈ V
19 vex 3500 . . . . . . . . . . . 12 𝑧 ∈ V
2018, 19elec 8336 . . . . . . . . . . 11 (𝑤 ∈ [𝑧]𝑆𝑧𝑆𝑤)
2117, 20syl6bb 289 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧𝑆𝑤))
2221anassrs 470 . . . . . . . . 9 ((((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) ∧ 𝑧𝑣) → (𝑤𝑣𝑧𝑆𝑤))
2322pm5.32da 581 . . . . . . . 8 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑆𝑤)))
2423rexbidva 3299 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
25 simpll 765 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑆 Er 𝐴)
26 simpr 487 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧𝑆𝑤)
2725, 26ercl 8303 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧 𝐴)
28 eluni2 4845 . . . . . . . . . . 11 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
2927, 28sylib 220 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → ∃𝑣𝐴 𝑧𝑣)
3029ex 415 . . . . . . . . 9 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 → ∃𝑣𝐴 𝑧𝑣))
3130pm4.71rd 565 . . . . . . . 8 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤)))
32 r19.41v 3350 . . . . . . . 8 (∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤) ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤))
3331, 32syl6bbr 291 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
3424, 33bitr4d 284 . . . . . 6 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧𝑆𝑤))
355, 34syl5bb 285 . . . . 5 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧 𝑤𝑧𝑆𝑤))
3635adantl 484 . . . 4 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → (𝑧 𝑤𝑧𝑆𝑤))
3736eqbrrdv2 36003 . . 3 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
384, 37mpanl1 698 . 2 ((Rel 𝑆 ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
392, 38mpancom 686 1 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wrex 3142  cdif 3936  c0 4294  {csn 4570   cuni 4841   class class class wbr 5069  {copab 5131  Rel wrel 5563   Er wer 8289  [cec 8290   / cqs 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-er 8292  df-ec 8294  df-qs 8298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator