| Step | Hyp | Ref
| Expression |
| 1 | | errel 8754 |
. . 3
⊢ (𝑆 Er ∪
𝐴 → Rel 𝑆) |
| 2 | 1 | adantr 480 |
. 2
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) → Rel
𝑆) |
| 3 | | prtlem18.1 |
. . . 4
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| 4 | 3 | relopabiv 5830 |
. . 3
⊢ Rel ∼ |
| 5 | 3 | prtlem13 38869 |
. . . . . 6
⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 6 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑆 Er ∪ 𝐴) |
| 7 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 ∈ 𝐴) |
| 8 | | ne0i 4341 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑣 → 𝑣 ≠ ∅) |
| 9 | 8 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 ≠ ∅) |
| 10 | | eldifsn 4786 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝐴 ∖ {∅}) ↔ (𝑣 ∈ 𝐴 ∧ 𝑣 ≠ ∅)) |
| 11 | 7, 9, 10 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 ∈ (𝐴 ∖ {∅})) |
| 12 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (∪ 𝐴 / 𝑆) = (𝐴 ∖ {∅})) |
| 13 | 11, 12 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 ∈ (∪ 𝐴 / 𝑆)) |
| 14 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑧 ∈ 𝑣) |
| 15 | | qsel 8836 |
. . . . . . . . . . . . 13
⊢ ((𝑆 Er ∪
𝐴 ∧ 𝑣 ∈ (∪ 𝐴 / 𝑆) ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧]𝑆) |
| 16 | 6, 13, 14, 15 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 = [𝑧]𝑆) |
| 17 | 16 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [𝑧]𝑆)) |
| 18 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑤 ∈ V |
| 19 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
| 20 | 18, 19 | elec 8791 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ [𝑧]𝑆 ↔ 𝑧𝑆𝑤) |
| 21 | 17, 20 | bitrdi 287 |
. . . . . . . . . 10
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧
(𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑧𝑆𝑤)) |
| 22 | 21 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣 ∈ 𝐴) ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧𝑆𝑤)) |
| 23 | 22 | pm5.32da 579 |
. . . . . . . 8
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣 ∈ 𝐴) → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑧𝑆𝑤))) |
| 24 | 23 | rexbidva 3177 |
. . . . . . 7
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
(∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑧𝑆𝑤))) |
| 25 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑆 Er ∪ 𝐴) |
| 26 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧𝑆𝑤) |
| 27 | 25, 26 | ercl 8756 |
. . . . . . . . . . 11
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧 ∈ ∪ 𝐴) |
| 28 | | eluni2 4911 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ∪ 𝐴
↔ ∃𝑣 ∈
𝐴 𝑧 ∈ 𝑣) |
| 29 | 27, 28 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣) |
| 30 | 29 | ex 412 |
. . . . . . . . 9
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
(𝑧𝑆𝑤 → ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣)) |
| 31 | 30 | pm4.71rd 562 |
. . . . . . . 8
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
(𝑧𝑆𝑤 ↔ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑧𝑆𝑤))) |
| 32 | | r19.41v 3189 |
. . . . . . . 8
⊢
(∃𝑣 ∈
𝐴 (𝑧 ∈ 𝑣 ∧ 𝑧𝑆𝑤) ↔ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑧𝑆𝑤)) |
| 33 | 31, 32 | bitr4di 289 |
. . . . . . 7
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
(𝑧𝑆𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑧𝑆𝑤))) |
| 34 | 24, 33 | bitr4d 282 |
. . . . . 6
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
(∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧𝑆𝑤)) |
| 35 | 5, 34 | bitrid 283 |
. . . . 5
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
(𝑧 ∼ 𝑤 ↔ 𝑧𝑆𝑤)) |
| 36 | 35 | adantl 481 |
. . . 4
⊢ (((Rel
∼
∧ Rel 𝑆) ∧ (𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅}))) →
(𝑧 ∼ 𝑤 ↔ 𝑧𝑆𝑤)) |
| 37 | 36 | eqbrrdv2 38864 |
. . 3
⊢ (((Rel
∼
∧ Rel 𝑆) ∧ (𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅}))) →
∼
= 𝑆) |
| 38 | 4, 37 | mpanl1 700 |
. 2
⊢ ((Rel
𝑆 ∧ (𝑆 Er ∪ 𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅}))) →
∼
= 𝑆) |
| 39 | 2, 38 | mpancom 688 |
1
⊢ ((𝑆 Er ∪
𝐴 ∧ (∪ 𝐴
/ 𝑆) = (𝐴 ∖ {∅})) →
∼
= 𝑆) |