Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter3 Structured version   Visualization version   GIF version

Theorem prter3 35460
Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter3 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)   𝑆(𝑥,𝑦,𝑢)

Proof of Theorem prter3
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 8098 . . 3 (𝑆 Er 𝐴 → Rel 𝑆)
21adantr 473 . 2 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → Rel 𝑆)
3 prtlem18.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
43relopabi 5544 . . 3 Rel
53prtlem13 35446 . . . . . 6 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
6 simpll 754 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑆 Er 𝐴)
7 simprl 758 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣𝐴)
8 ne0i 4187 . . . . . . . . . . . . . . . 16 (𝑧𝑣𝑣 ≠ ∅)
98ad2antll 716 . . . . . . . . . . . . . . 15 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ≠ ∅)
10 eldifsn 4593 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴 ∖ {∅}) ↔ (𝑣𝐴𝑣 ≠ ∅))
117, 9, 10sylanbrc 575 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ (𝐴 ∖ {∅}))
12 simplr 756 . . . . . . . . . . . . . 14 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))
1311, 12eleqtrrd 2870 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 ∈ ( 𝐴 / 𝑆))
14 simprr 760 . . . . . . . . . . . . 13 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑧𝑣)
15 qsel 8176 . . . . . . . . . . . . 13 ((𝑆 Er 𝐴𝑣 ∈ ( 𝐴 / 𝑆) ∧ 𝑧𝑣) → 𝑣 = [𝑧]𝑆)
166, 13, 14, 15syl3anc 1351 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧]𝑆)
1716eleq2d 2852 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧]𝑆))
18 vex 3419 . . . . . . . . . . . 12 𝑤 ∈ V
19 vex 3419 . . . . . . . . . . . 12 𝑧 ∈ V
2018, 19elec 8133 . . . . . . . . . . 11 (𝑤 ∈ [𝑧]𝑆𝑧𝑆𝑤)
2117, 20syl6bb 279 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧𝑆𝑤))
2221anassrs 460 . . . . . . . . 9 ((((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) ∧ 𝑧𝑣) → (𝑤𝑣𝑧𝑆𝑤))
2322pm5.32da 571 . . . . . . . 8 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑣𝐴) → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣𝑧𝑆𝑤)))
2423rexbidva 3242 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
25 simpll 754 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑆 Er 𝐴)
26 simpr 477 . . . . . . . . . . . 12 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧𝑆𝑤)
2725, 26ercl 8100 . . . . . . . . . . 11 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → 𝑧 𝐴)
28 eluni2 4716 . . . . . . . . . . 11 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
2927, 28sylib 210 . . . . . . . . . 10 (((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) ∧ 𝑧𝑆𝑤) → ∃𝑣𝐴 𝑧𝑣)
3029ex 405 . . . . . . . . 9 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 → ∃𝑣𝐴 𝑧𝑣))
3130pm4.71rd 555 . . . . . . . 8 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤)))
32 r19.41v 3289 . . . . . . . 8 (∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤) ↔ (∃𝑣𝐴 𝑧𝑣𝑧𝑆𝑤))
3331, 32syl6bbr 281 . . . . . . 7 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧𝑆𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑧𝑆𝑤)))
3424, 33bitr4d 274 . . . . . 6 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ↔ 𝑧𝑆𝑤))
355, 34syl5bb 275 . . . . 5 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → (𝑧 𝑤𝑧𝑆𝑤))
3635adantl 474 . . . 4 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → (𝑧 𝑤𝑧𝑆𝑤))
3736eqbrrdv2 35441 . . 3 (((Rel ∧ Rel 𝑆) ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
384, 37mpanl1 687 . 2 ((Rel 𝑆 ∧ (𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅}))) → = 𝑆)
392, 38mpancom 675 1 ((𝑆 Er 𝐴 ∧ ( 𝐴 / 𝑆) = (𝐴 ∖ {∅})) → = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2968  wrex 3090  cdif 3827  c0 4179  {csn 4441   cuni 4712   class class class wbr 4929  {copab 4991  Rel wrel 5412   Er wer 8086  [cec 8087   / cqs 8088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-er 8089  df-ec 8091  df-qs 8095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator