Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter1 Structured version   Visualization version   GIF version

Theorem prter1 38835
Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter1 (Prt 𝐴 Er 𝐴)
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prter1
Dummy variables 𝑞 𝑝 𝑟 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
21relopabiv 5844 . . 3 Rel
32a1i 11 . 2 (Prt 𝐴 → Rel )
41prtlem16 38825 . . 3 dom = 𝐴
54a1i 11 . 2 (Prt 𝐴 → dom = 𝐴)
6 prtlem15 38831 . . . . . 6 (Prt 𝐴 → (∃𝑣𝐴𝑞𝐴 ((𝑧𝑣𝑤𝑣) ∧ (𝑤𝑞𝑝𝑞)) → ∃𝑟𝐴 (𝑧𝑟𝑝𝑟)))
71prtlem13 38824 . . . . . . . 8 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
81prtlem13 38824 . . . . . . . 8 (𝑤 𝑝 ↔ ∃𝑞𝐴 (𝑤𝑞𝑝𝑞))
97, 8anbi12i 627 . . . . . . 7 ((𝑧 𝑤𝑤 𝑝) ↔ (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ∧ ∃𝑞𝐴 (𝑤𝑞𝑝𝑞)))
10 reeanv 3235 . . . . . . 7 (∃𝑣𝐴𝑞𝐴 ((𝑧𝑣𝑤𝑣) ∧ (𝑤𝑞𝑝𝑞)) ↔ (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) ∧ ∃𝑞𝐴 (𝑤𝑞𝑝𝑞)))
119, 10bitr4i 278 . . . . . 6 ((𝑧 𝑤𝑤 𝑝) ↔ ∃𝑣𝐴𝑞𝐴 ((𝑧𝑣𝑤𝑣) ∧ (𝑤𝑞𝑝𝑞)))
121prtlem13 38824 . . . . . 6 (𝑧 𝑝 ↔ ∃𝑟𝐴 (𝑧𝑟𝑝𝑟))
136, 11, 123imtr4g 296 . . . . 5 (Prt 𝐴 → ((𝑧 𝑤𝑤 𝑝) → 𝑧 𝑝))
14 pm3.22 459 . . . . . . 7 ((𝑧𝑣𝑤𝑣) → (𝑤𝑣𝑧𝑣))
1514reximi 3090 . . . . . 6 (∃𝑣𝐴 (𝑧𝑣𝑤𝑣) → ∃𝑣𝐴 (𝑤𝑣𝑧𝑣))
161prtlem13 38824 . . . . . 6 (𝑤 𝑧 ↔ ∃𝑣𝐴 (𝑤𝑣𝑧𝑣))
1715, 7, 163imtr4i 292 . . . . 5 (𝑧 𝑤𝑤 𝑧)
1813, 17jctil 519 . . . 4 (Prt 𝐴 → ((𝑧 𝑤𝑤 𝑧) ∧ ((𝑧 𝑤𝑤 𝑝) → 𝑧 𝑝)))
1918alrimivv 1927 . . 3 (Prt 𝐴 → ∀𝑤𝑝((𝑧 𝑤𝑤 𝑧) ∧ ((𝑧 𝑤𝑤 𝑝) → 𝑧 𝑝)))
2019alrimiv 1926 . 2 (Prt 𝐴 → ∀𝑧𝑤𝑝((𝑧 𝑤𝑤 𝑧) ∧ ((𝑧 𝑤𝑤 𝑝) → 𝑧 𝑝)))
21 dfer2 8764 . 2 ( Er 𝐴 ↔ (Rel ∧ dom = 𝐴 ∧ ∀𝑧𝑤𝑝((𝑧 𝑤𝑤 𝑧) ∧ ((𝑧 𝑤𝑤 𝑝) → 𝑧 𝑝))))
223, 5, 20, 21syl3anbrc 1343 1 (Prt 𝐴 Er 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wrex 3076   cuni 4931   class class class wbr 5166  {copab 5228  dom cdm 5700  Rel wrel 5705   Er wer 8760  Prt wprt 38827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-er 8763  df-prt 38828
This theorem is referenced by:  prtex  38836
  Copyright terms: Public domain W3C validator