| Step | Hyp | Ref
| Expression |
| 1 | | prtlem18.1 |
. . . 4
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| 2 | 1 | relopabiv 5810 |
. . 3
⊢ Rel ∼ |
| 3 | 2 | a1i 11 |
. 2
⊢ (Prt
𝐴 → Rel ∼
) |
| 4 | 1 | prtlem16 38804 |
. . 3
⊢ dom ∼ =
∪ 𝐴 |
| 5 | 4 | a1i 11 |
. 2
⊢ (Prt
𝐴 → dom ∼ =
∪ 𝐴) |
| 6 | | prtlem15 38810 |
. . . . . 6
⊢ (Prt
𝐴 → (∃𝑣 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ∧ (𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞)) → ∃𝑟 ∈ 𝐴 (𝑧 ∈ 𝑟 ∧ 𝑝 ∈ 𝑟))) |
| 7 | 1 | prtlem13 38803 |
. . . . . . . 8
⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| 8 | 1 | prtlem13 38803 |
. . . . . . . 8
⊢ (𝑤 ∼ 𝑝 ↔ ∃𝑞 ∈ 𝐴 (𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞)) |
| 9 | 7, 8 | anbi12i 628 |
. . . . . . 7
⊢ ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) ↔ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ∧ ∃𝑞 ∈ 𝐴 (𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞))) |
| 10 | | reeanv 3216 |
. . . . . . 7
⊢
(∃𝑣 ∈
𝐴 ∃𝑞 ∈ 𝐴 ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ∧ (𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞)) ↔ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ∧ ∃𝑞 ∈ 𝐴 (𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞))) |
| 11 | 9, 10 | bitr4i 278 |
. . . . . 6
⊢ ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) ↔ ∃𝑣 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ∧ (𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞))) |
| 12 | 1 | prtlem13 38803 |
. . . . . 6
⊢ (𝑧 ∼ 𝑝 ↔ ∃𝑟 ∈ 𝐴 (𝑧 ∈ 𝑟 ∧ 𝑝 ∈ 𝑟)) |
| 13 | 6, 11, 12 | 3imtr4g 296 |
. . . . 5
⊢ (Prt
𝐴 → ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) → 𝑧 ∼ 𝑝)) |
| 14 | | pm3.22 459 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → (𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) |
| 15 | 14 | reximi 3073 |
. . . . . 6
⊢
(∃𝑣 ∈
𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → ∃𝑣 ∈ 𝐴 (𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) |
| 16 | 1 | prtlem13 38803 |
. . . . . 6
⊢ (𝑤 ∼ 𝑧 ↔ ∃𝑣 ∈ 𝐴 (𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) |
| 17 | 15, 7, 16 | 3imtr4i 292 |
. . . . 5
⊢ (𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧) |
| 18 | 13, 17 | jctil 519 |
. . . 4
⊢ (Prt
𝐴 → ((𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧) ∧ ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) → 𝑧 ∼ 𝑝))) |
| 19 | 18 | alrimivv 1927 |
. . 3
⊢ (Prt
𝐴 → ∀𝑤∀𝑝((𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧) ∧ ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) → 𝑧 ∼ 𝑝))) |
| 20 | 19 | alrimiv 1926 |
. 2
⊢ (Prt
𝐴 → ∀𝑧∀𝑤∀𝑝((𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧) ∧ ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) → 𝑧 ∼ 𝑝))) |
| 21 | | dfer2 8727 |
. 2
⊢ ( ∼ Er
∪ 𝐴 ↔ (Rel ∼ ∧ dom ∼ =
∪ 𝐴 ∧ ∀𝑧∀𝑤∀𝑝((𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧) ∧ ((𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝) → 𝑧 ∼ 𝑝)))) |
| 22 | 3, 5, 20, 21 | syl3anbrc 1343 |
1
⊢ (Prt
𝐴 → ∼ Er ∪ 𝐴) |