![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq5i | Structured version Visualization version GIF version |
Description: Half of infeq5 9628. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5i | ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 5326 | . 2 ⊢ (ω ∈ V → (ω ∖ {∅}) ∈ V) | |
2 | 0ex 5306 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | snid 4663 | . . . 4 ⊢ ∅ ∈ {∅} |
4 | disj4 4457 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω) | |
5 | disj3 4452 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅})) | |
6 | 4, 5 | bitr3i 276 | . . . . 5 ⊢ (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅})) |
7 | peano1 7875 | . . . . . . 7 ⊢ ∅ ∈ ω | |
8 | eleq2 2822 | . . . . . . 7 ⊢ (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅}))) | |
9 | 7, 8 | mpbii 232 | . . . . . 6 ⊢ (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅})) |
10 | 9 | eldifbd 3960 | . . . . 5 ⊢ (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅}) |
11 | 6, 10 | sylbi 216 | . . . 4 ⊢ (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅}) |
12 | 3, 11 | mt4 116 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
13 | unidif0 5357 | . . . . 5 ⊢ ∪ (ω ∖ {∅}) = ∪ ω | |
14 | limom 7867 | . . . . . 6 ⊢ Lim ω | |
15 | limuni 6422 | . . . . . 6 ⊢ (Lim ω → ω = ∪ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ ω = ∪ ω |
17 | 13, 16 | eqtr4i 2763 | . . . 4 ⊢ ∪ (ω ∖ {∅}) = ω |
18 | 17 | psseq2i 4089 | . . 3 ⊢ ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω) |
19 | 12, 18 | mpbir 230 | . 2 ⊢ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) |
20 | psseq1 4086 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ 𝑥)) | |
21 | unieq 4918 | . . . . 5 ⊢ (𝑥 = (ω ∖ {∅}) → ∪ 𝑥 = ∪ (ω ∖ {∅})) | |
22 | 21 | psseq2d 4092 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
23 | 20, 22 | bitrd 278 | . . 3 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
24 | 23 | spcegv 3587 | . 2 ⊢ ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) → ∃𝑥 𝑥 ⊊ ∪ 𝑥)) |
25 | 1, 19, 24 | mpisyl 21 | 1 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3944 ∩ cin 3946 ⊊ wpss 3948 ∅c0 4321 {csn 4627 ∪ cuni 4907 Lim wlim 6362 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-om 7852 |
This theorem is referenced by: infeq5 9628 inf5 9636 |
Copyright terms: Public domain | W3C validator |