Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq5i | Structured version Visualization version GIF version |
Description: Half of infeq5 9133. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5i | ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 5197 | . 2 ⊢ (ω ∈ V → (ω ∖ {∅}) ∈ V) | |
2 | 0ex 5177 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | snid 4558 | . . . 4 ⊢ ∅ ∈ {∅} |
4 | disj4 4355 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω) | |
5 | disj3 4350 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅})) | |
6 | 4, 5 | bitr3i 280 | . . . . 5 ⊢ (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅})) |
7 | peano1 7600 | . . . . . . 7 ⊢ ∅ ∈ ω | |
8 | eleq2 2840 | . . . . . . 7 ⊢ (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅}))) | |
9 | 7, 8 | mpbii 236 | . . . . . 6 ⊢ (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅})) |
10 | 9 | eldifbd 3871 | . . . . 5 ⊢ (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅}) |
11 | 6, 10 | sylbi 220 | . . . 4 ⊢ (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅}) |
12 | 3, 11 | mt4 116 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
13 | unidif0 5228 | . . . . 5 ⊢ ∪ (ω ∖ {∅}) = ∪ ω | |
14 | limom 7594 | . . . . . 6 ⊢ Lim ω | |
15 | limuni 6229 | . . . . . 6 ⊢ (Lim ω → ω = ∪ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ ω = ∪ ω |
17 | 13, 16 | eqtr4i 2784 | . . . 4 ⊢ ∪ (ω ∖ {∅}) = ω |
18 | 17 | psseq2i 3996 | . . 3 ⊢ ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω) |
19 | 12, 18 | mpbir 234 | . 2 ⊢ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) |
20 | psseq1 3993 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ 𝑥)) | |
21 | unieq 4809 | . . . . 5 ⊢ (𝑥 = (ω ∖ {∅}) → ∪ 𝑥 = ∪ (ω ∖ {∅})) | |
22 | 21 | psseq2d 3999 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
23 | 20, 22 | bitrd 282 | . . 3 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
24 | 23 | spcegv 3515 | . 2 ⊢ ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) → ∃𝑥 𝑥 ⊊ ∪ 𝑥)) |
25 | 1, 19, 24 | mpisyl 21 | 1 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∃wex 1781 ∈ wcel 2111 Vcvv 3409 ∖ cdif 3855 ∩ cin 3857 ⊊ wpss 3859 ∅c0 4225 {csn 4522 ∪ cuni 4798 Lim wlim 6170 ωcom 7579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-om 7580 |
This theorem is referenced by: infeq5 9133 inf5 9141 |
Copyright terms: Public domain | W3C validator |