MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5i Structured version   Visualization version   GIF version

Theorem infeq5i 9648
Description: Half of infeq5 9649. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5i (ω ∈ V → ∃𝑥 𝑥 𝑥)

Proof of Theorem infeq5i
StepHypRef Expression
1 difexg 5299 . 2 (ω ∈ V → (ω ∖ {∅}) ∈ V)
2 0ex 5277 . . . . 5 ∅ ∈ V
32snid 4638 . . . 4 ∅ ∈ {∅}
4 disj4 4434 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω)
5 disj3 4429 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅}))
64, 5bitr3i 277 . . . . 5 (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅}))
7 peano1 7882 . . . . . . 7 ∅ ∈ ω
8 eleq2 2823 . . . . . . 7 (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅})))
97, 8mpbii 233 . . . . . 6 (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅}))
109eldifbd 3939 . . . . 5 (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅})
116, 10sylbi 217 . . . 4 (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅})
123, 11mt4 116 . . 3 (ω ∖ {∅}) ⊊ ω
13 unidif0 5330 . . . . 5 (ω ∖ {∅}) = ω
14 limom 7875 . . . . . 6 Lim ω
15 limuni 6414 . . . . . 6 (Lim ω → ω = ω)
1614, 15ax-mp 5 . . . . 5 ω = ω
1713, 16eqtr4i 2761 . . . 4 (ω ∖ {∅}) = ω
1817psseq2i 4068 . . 3 ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω)
1912, 18mpbir 231 . 2 (ω ∖ {∅}) ⊊ (ω ∖ {∅})
20 psseq1 4065 . . . 4 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ 𝑥))
21 unieq 4894 . . . . 5 (𝑥 = (ω ∖ {∅}) → 𝑥 = (ω ∖ {∅}))
2221psseq2d 4071 . . . 4 (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2320, 22bitrd 279 . . 3 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2423spcegv 3576 . 2 ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) → ∃𝑥 𝑥 𝑥))
251, 19, 24mpisyl 21 1 (ω ∈ V → ∃𝑥 𝑥 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cdif 3923  cin 3925  wpss 3927  c0 4308  {csn 4601   cuni 4883  Lim wlim 6353  ωcom 7859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-om 7860
This theorem is referenced by:  infeq5  9649  inf5  9657
  Copyright terms: Public domain W3C validator