MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5i Structured version   Visualization version   GIF version

Theorem infeq5i 8700
Description: Half of infeq5 8701. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5i (ω ∈ V → ∃𝑥 𝑥 𝑥)

Proof of Theorem infeq5i
StepHypRef Expression
1 difexg 4943 . 2 (ω ∈ V → (ω ∖ {∅}) ∈ V)
2 0ex 4925 . . . . 5 ∅ ∈ V
32snid 4348 . . . 4 ∅ ∈ {∅}
4 disj4 4170 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω)
5 disj3 4165 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅}))
64, 5bitr3i 266 . . . . 5 (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅}))
7 peano1 7235 . . . . . . 7 ∅ ∈ ω
8 eleq2 2839 . . . . . . 7 (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅})))
97, 8mpbii 223 . . . . . 6 (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅}))
109eldifbd 3736 . . . . 5 (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅})
116, 10sylbi 207 . . . 4 (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅})
123, 11mt4 116 . . 3 (ω ∖ {∅}) ⊊ ω
13 unidif0 4970 . . . . 5 (ω ∖ {∅}) = ω
14 limom 7230 . . . . . 6 Lim ω
15 limuni 5927 . . . . . 6 (Lim ω → ω = ω)
1614, 15ax-mp 5 . . . . 5 ω = ω
1713, 16eqtr4i 2796 . . . 4 (ω ∖ {∅}) = ω
1817psseq2i 3847 . . 3 ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω)
1912, 18mpbir 221 . 2 (ω ∖ {∅}) ⊊ (ω ∖ {∅})
20 psseq1 3844 . . . 4 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ 𝑥))
21 unieq 4583 . . . . 5 (𝑥 = (ω ∖ {∅}) → 𝑥 = (ω ∖ {∅}))
2221psseq2d 3850 . . . 4 (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2320, 22bitrd 268 . . 3 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2423spcegv 3445 . 2 ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) → ∃𝑥 𝑥 𝑥))
251, 19, 24mpisyl 21 1 (ω ∈ V → ∃𝑥 𝑥 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1631  wex 1852  wcel 2145  Vcvv 3351  cdif 3720  cin 3722  wpss 3724  c0 4063  {csn 4317   cuni 4575  Lim wlim 5866  ωcom 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7099
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-om 7216
This theorem is referenced by:  infeq5  8701  inf5  8709
  Copyright terms: Public domain W3C validator