MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjpss Structured version   Visualization version   GIF version

Theorem disjpss 4391
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
disjpss (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴𝐵))

Proof of Theorem disjpss
StepHypRef Expression
1 ssid 3939 . . . . . . . 8 𝐵𝐵
21biantru 529 . . . . . . 7 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐵))
3 ssin 4161 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
42, 3bitri 274 . . . . . 6 (𝐵𝐴𝐵 ⊆ (𝐴𝐵))
5 sseq2 3943 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
64, 5syl5bb 282 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵𝐴𝐵 ⊆ ∅))
7 ss0 4329 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
86, 7syl6bi 252 . . . 4 ((𝐴𝐵) = ∅ → (𝐵𝐴𝐵 = ∅))
98necon3ad 2955 . . 3 ((𝐴𝐵) = ∅ → (𝐵 ≠ ∅ → ¬ 𝐵𝐴))
109imp 406 . 2 (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → ¬ 𝐵𝐴)
11 nsspssun 4188 . . 3 𝐵𝐴𝐴 ⊊ (𝐵𝐴))
12 uncom 4083 . . . 4 (𝐵𝐴) = (𝐴𝐵)
1312psseq2i 4021 . . 3 (𝐴 ⊊ (𝐵𝐴) ↔ 𝐴 ⊊ (𝐴𝐵))
1411, 13bitri 274 . 2 𝐵𝐴𝐴 ⊊ (𝐴𝐵))
1510, 14sylib 217 1 (((𝐴𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wne 2942  cun 3881  cin 3882  wss 3883  wpss 3884  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254
This theorem is referenced by:  omsucne  7706  isfin1-3  10073
  Copyright terms: Public domain W3C validator