| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjpss | Structured version Visualization version GIF version | ||
| Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| disjpss | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 4006 | . . . . . . . 8 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | 1 | biantru 529 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵)) |
| 3 | ssin 4239 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵) ↔ 𝐵 ⊆ (𝐴 ∩ 𝐵)) | |
| 4 | 2, 3 | bitri 275 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ (𝐴 ∩ 𝐵)) |
| 5 | sseq2 4010 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∩ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
| 6 | 4, 5 | bitrid 283 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∅)) |
| 7 | ss0 4402 | . . . . 5 ⊢ (𝐵 ⊆ ∅ → 𝐵 = ∅) | |
| 8 | 6, 7 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ 𝐴 → 𝐵 = ∅)) |
| 9 | 8 | necon3ad 2953 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ≠ ∅ → ¬ 𝐵 ⊆ 𝐴)) |
| 10 | 9 | imp 406 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → ¬ 𝐵 ⊆ 𝐴) |
| 11 | nsspssun 4268 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ (𝐵 ∪ 𝐴)) | |
| 12 | uncom 4158 | . . . 4 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 13 | 12 | psseq2i 4093 | . . 3 ⊢ (𝐴 ⊊ (𝐵 ∪ 𝐴) ↔ 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| 14 | 11, 13 | bitri 275 | . 2 ⊢ (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| 15 | 10, 14 | sylib 218 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2940 ∪ cun 3949 ∩ cin 3950 ⊆ wss 3951 ⊊ wpss 3952 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 |
| This theorem is referenced by: omsucne 7906 isfin1-3 10426 |
| Copyright terms: Public domain | W3C validator |