| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjpss | Structured version Visualization version GIF version | ||
| Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| disjpss | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . . . . . . . 8 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | 1 | biantru 529 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵)) |
| 3 | ssin 4188 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵) ↔ 𝐵 ⊆ (𝐴 ∩ 𝐵)) | |
| 4 | 2, 3 | bitri 275 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ (𝐴 ∩ 𝐵)) |
| 5 | sseq2 3957 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∩ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
| 6 | 4, 5 | bitrid 283 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∅)) |
| 7 | ss0 4351 | . . . . 5 ⊢ (𝐵 ⊆ ∅ → 𝐵 = ∅) | |
| 8 | 6, 7 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ 𝐴 → 𝐵 = ∅)) |
| 9 | 8 | necon3ad 2942 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ≠ ∅ → ¬ 𝐵 ⊆ 𝐴)) |
| 10 | 9 | imp 406 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → ¬ 𝐵 ⊆ 𝐴) |
| 11 | nsspssun 4217 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ (𝐵 ∪ 𝐴)) | |
| 12 | uncom 4107 | . . . 4 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 13 | 12 | psseq2i 4042 | . . 3 ⊢ (𝐴 ⊊ (𝐵 ∪ 𝐴) ↔ 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| 14 | 11, 13 | bitri 275 | . 2 ⊢ (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| 15 | 10, 14 | sylib 218 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2929 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ⊊ wpss 3899 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 |
| This theorem is referenced by: omsucne 7821 isfin1-3 10284 |
| Copyright terms: Public domain | W3C validator |