Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssv | Structured version Visualization version GIF version |
Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
pssv | ⊢ (𝐴 ⊊ V ↔ ¬ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3945 | . 2 ⊢ 𝐴 ⊆ V | |
2 | dfpss2 4020 | . 2 ⊢ (𝐴 ⊊ V ↔ (𝐴 ⊆ V ∧ ¬ 𝐴 = V)) | |
3 | 1, 2 | mpbiran 706 | 1 ⊢ (𝐴 ⊊ V ↔ ¬ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 Vcvv 3430 ⊆ wss 3887 ⊊ wpss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3432 df-in 3894 df-ss 3904 df-pss 3906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |