MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssv Structured version   Visualization version   GIF version

Theorem pssv 4412
Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
pssv (𝐴 ⊊ V ↔ ¬ 𝐴 = V)

Proof of Theorem pssv
StepHypRef Expression
1 ssv 3971 . 2 𝐴 ⊆ V
2 dfpss2 4051 . 2 (𝐴 ⊊ V ↔ (𝐴 ⊆ V ∧ ¬ 𝐴 = V))
31, 2mpbiran 709 1 (𝐴 ⊊ V ↔ ¬ 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  Vcvv 3447  wss 3914  wpss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-ss 3931  df-pss 3934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator