![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssv | Structured version Visualization version GIF version |
Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
pssv | ⊢ (𝐴 ⊊ V ↔ ¬ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3822 | . 2 ⊢ 𝐴 ⊆ V | |
2 | dfpss2 3890 | . 2 ⊢ (𝐴 ⊊ V ↔ (𝐴 ⊆ V ∧ ¬ 𝐴 = V)) | |
3 | 1, 2 | mpbiran 701 | 1 ⊢ (𝐴 ⊊ V ↔ ¬ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1653 Vcvv 3386 ⊆ wss 3770 ⊊ wpss 3771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-ne 2973 df-v 3388 df-in 3777 df-ss 3784 df-pss 3786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |