MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npss0 Structured version   Visualization version   GIF version

Theorem npss0 4455
Description: No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
npss0 ¬ 𝐴 ⊊ ∅

Proof of Theorem npss0
StepHypRef Expression
1 0ss 4407 . 2 ∅ ⊆ 𝐴
2 ssnpss 4117 . 2 (∅ ⊆ 𝐴 → ¬ 𝐴 ⊊ ∅)
31, 2ax-mp 5 1 ¬ 𝐴 ⊊ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wss 3964  wpss 3965  c0 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-dif 3967  df-ss 3981  df-pss 3984  df-nul 4341
This theorem is referenced by:  pssnn  9213  pssn0  42257
  Copyright terms: Public domain W3C validator