MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npss0 Structured version   Visualization version   GIF version

Theorem npss0 4411
Description: No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
npss0 ¬ 𝐴 ⊊ ∅

Proof of Theorem npss0
StepHypRef Expression
1 0ss 4363 . 2 ∅ ⊆ 𝐴
2 ssnpss 4069 . 2 (∅ ⊆ 𝐴 → ¬ 𝐴 ⊊ ∅)
31, 2ax-mp 5 1 ¬ 𝐴 ⊊ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wss 3914  wpss 3915  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-dif 3917  df-ss 3931  df-pss 3934  df-nul 4297
This theorem is referenced by:  pssnn  9132  pssn0  42215
  Copyright terms: Public domain W3C validator