Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npss0 | Structured version Visualization version GIF version |
Description: No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
npss0 | ⊢ ¬ 𝐴 ⊊ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . 2 ⊢ ∅ ⊆ 𝐴 | |
2 | ssnpss 4034 | . 2 ⊢ (∅ ⊆ 𝐴 → ¬ 𝐴 ⊊ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ⊊ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊆ wss 3883 ⊊ wpss 3884 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 |
This theorem is referenced by: pssnn 8913 pssnnOLD 8969 pssn0 40128 |
Copyright terms: Public domain | W3C validator |