Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3911 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2946 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1542 ≠ wne 2945 ⊆ wss 3892 ⊊ wpss 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2946 df-pss 3911 |
This theorem is referenced by: dfpss3 4026 sspss 4039 psstr 4044 npss 4050 ssnelpss 4051 pssv 4386 disj4 4398 f1imapss 7136 pssnn 8933 phpeqd 8979 phpeqdOLD 8990 nnsdomo 8997 pssnnOLD 9018 inf3lem6 9369 ssfin4 10067 fin23lem25 10081 fin23lem38 10106 isf32lem2 10111 pwfseqlem4 10419 genpcl 10765 prlem934 10790 ltaddpr 10791 chnlei 29843 cvbr2 30641 cvnbtwn2 30645 cvnbtwn3 30646 cvnbtwn4 30647 dfon2lem3 33757 dfon2lem5 33759 dfon2lem6 33760 dfon2lem7 33761 dfon2lem8 33762 sltlpss 34083 dfon3 34190 lcvbr2 37032 lcvnbtwn2 37037 lcvnbtwn3 37038 rr-phpd 41791 |
Copyright terms: Public domain | W3C validator |