Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3902 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 622 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ne 2943 df-pss 3902 |
This theorem is referenced by: dfpss3 4017 sspss 4030 psstr 4035 npss 4041 ssnelpss 4042 pssv 4377 disj4 4389 f1imapss 7120 phpeqd 8902 pssnn 8913 nnsdomo 8948 pssnnOLD 8969 inf3lem6 9321 ssfin4 9997 fin23lem25 10011 fin23lem38 10036 isf32lem2 10041 pwfseqlem4 10349 genpcl 10695 prlem934 10720 ltaddpr 10721 chnlei 29748 cvbr2 30546 cvnbtwn2 30550 cvnbtwn3 30551 cvnbtwn4 30552 dfon2lem3 33667 dfon2lem5 33669 dfon2lem6 33670 dfon2lem7 33671 dfon2lem8 33672 sltlpss 34014 dfon3 34121 lcvbr2 36963 lcvnbtwn2 36968 lcvnbtwn3 36969 rr-phpd 41710 |
Copyright terms: Public domain | W3C validator |