MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss2 Structured version   Visualization version   GIF version

Theorem dfpss2 4039
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
dfpss2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))

Proof of Theorem dfpss2
StepHypRef Expression
1 df-pss 3923 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 df-ne 2926 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32anbi2i 623 . 2 ((𝐴𝐵𝐴𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
41, 3bitri 275 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wne 2925  wss 3903  wpss 3904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2926  df-pss 3923
This theorem is referenced by:  dfpss3  4040  sspss  4053  psstr  4058  npss  4064  ssnelpss  4065  pssv  4400  disj4  4410  f1imapss  7203  pssnn  9082  phpeqd  9126  nnsdomo  9132  inf3lem6  9529  ssfin4  10204  fin23lem25  10218  fin23lem38  10243  isf32lem2  10248  pwfseqlem4  10556  genpcl  10902  prlem934  10927  ltaddpr  10928  sltlpss  27822  chnlei  31429  cvbr2  32227  cvnbtwn2  32231  cvnbtwn3  32232  cvnbtwn4  32233  dfon2lem3  35759  dfon2lem5  35761  dfon2lem6  35762  dfon2lem7  35763  dfon2lem8  35764  dfon3  35866  lcvbr2  39001  lcvnbtwn2  39006  lcvnbtwn3  39007  rr-phpd  44182
  Copyright terms: Public domain W3C validator