MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss2 Structured version   Visualization version   GIF version

Theorem dfpss2 4063
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
dfpss2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))

Proof of Theorem dfpss2
StepHypRef Expression
1 df-pss 3946 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 df-ne 2933 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32anbi2i 623 . 2 ((𝐴𝐵𝐴𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
41, 3bitri 275 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wne 2932  wss 3926  wpss 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2933  df-pss 3946
This theorem is referenced by:  dfpss3  4064  sspss  4077  psstr  4082  npss  4088  ssnelpss  4089  pssv  4424  disj4  4434  f1imapss  7259  pssnn  9182  phpeqd  9226  phpeqdOLD  9234  nnsdomo  9242  inf3lem6  9647  ssfin4  10324  fin23lem25  10338  fin23lem38  10363  isf32lem2  10368  pwfseqlem4  10676  genpcl  11022  prlem934  11047  ltaddpr  11048  sltlpss  27871  chnlei  31466  cvbr2  32264  cvnbtwn2  32268  cvnbtwn3  32269  cvnbtwn4  32270  dfon2lem3  35803  dfon2lem5  35805  dfon2lem6  35806  dfon2lem7  35807  dfon2lem8  35808  dfon3  35910  lcvbr2  39040  lcvnbtwn2  39045  lcvnbtwn3  39046  rr-phpd  44233
  Copyright terms: Public domain W3C validator