Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3906 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2944 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1539 ≠ wne 2943 ⊆ wss 3887 ⊊ wpss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2944 df-pss 3906 |
This theorem is referenced by: dfpss3 4021 sspss 4034 psstr 4039 npss 4045 ssnelpss 4046 pssv 4380 disj4 4392 f1imapss 7139 pssnn 8951 phpeqd 8998 phpeqdOLD 9008 nnsdomo 9017 pssnnOLD 9040 inf3lem6 9391 ssfin4 10066 fin23lem25 10080 fin23lem38 10105 isf32lem2 10110 pwfseqlem4 10418 genpcl 10764 prlem934 10789 ltaddpr 10790 chnlei 29847 cvbr2 30645 cvnbtwn2 30649 cvnbtwn3 30650 cvnbtwn4 30651 dfon2lem3 33761 dfon2lem5 33763 dfon2lem6 33764 dfon2lem7 33765 dfon2lem8 33766 sltlpss 34087 dfon3 34194 lcvbr2 37036 lcvnbtwn2 37041 lcvnbtwn3 37042 rr-phpd 41821 |
Copyright terms: Public domain | W3C validator |