| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3934 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3914 ⊊ wpss 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 df-pss 3934 |
| This theorem is referenced by: dfpss3 4052 sspss 4065 psstr 4070 npss 4076 ssnelpss 4077 pssv 4412 disj4 4422 f1imapss 7241 pssnn 9132 phpeqd 9176 nnsdomo 9182 inf3lem6 9586 ssfin4 10263 fin23lem25 10277 fin23lem38 10302 isf32lem2 10307 pwfseqlem4 10615 genpcl 10961 prlem934 10986 ltaddpr 10987 sltlpss 27819 chnlei 31414 cvbr2 32212 cvnbtwn2 32216 cvnbtwn3 32217 cvnbtwn4 32218 dfon2lem3 35773 dfon2lem5 35775 dfon2lem6 35776 dfon2lem7 35777 dfon2lem8 35778 dfon3 35880 lcvbr2 39015 lcvnbtwn2 39020 lcvnbtwn3 39021 rr-phpd 44198 |
| Copyright terms: Public domain | W3C validator |