![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3983 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2939 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2938 ⊆ wss 3963 ⊊ wpss 3964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2939 df-pss 3983 |
This theorem is referenced by: dfpss3 4099 sspss 4112 psstr 4117 npss 4123 ssnelpss 4124 pssv 4455 disj4 4465 f1imapss 7286 pssnn 9207 phpeqd 9250 phpeqdOLD 9260 nnsdomo 9268 inf3lem6 9671 ssfin4 10348 fin23lem25 10362 fin23lem38 10387 isf32lem2 10392 pwfseqlem4 10700 genpcl 11046 prlem934 11071 ltaddpr 11072 sltlpss 27960 chnlei 31514 cvbr2 32312 cvnbtwn2 32316 cvnbtwn3 32317 cvnbtwn4 32318 dfon2lem3 35767 dfon2lem5 35769 dfon2lem6 35770 dfon2lem7 35771 dfon2lem8 35772 dfon3 35874 lcvbr2 39004 lcvnbtwn2 39009 lcvnbtwn3 39010 rr-phpd 44199 |
Copyright terms: Public domain | W3C validator |