| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3946 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2932 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2933 df-pss 3946 |
| This theorem is referenced by: dfpss3 4064 sspss 4077 psstr 4082 npss 4088 ssnelpss 4089 pssv 4424 disj4 4434 f1imapss 7259 pssnn 9182 phpeqd 9226 phpeqdOLD 9234 nnsdomo 9242 inf3lem6 9647 ssfin4 10324 fin23lem25 10338 fin23lem38 10363 isf32lem2 10368 pwfseqlem4 10676 genpcl 11022 prlem934 11047 ltaddpr 11048 sltlpss 27871 chnlei 31466 cvbr2 32264 cvnbtwn2 32268 cvnbtwn3 32269 cvnbtwn4 32270 dfon2lem3 35803 dfon2lem5 35805 dfon2lem6 35806 dfon2lem7 35807 dfon2lem8 35808 dfon3 35910 lcvbr2 39040 lcvnbtwn2 39045 lcvnbtwn3 39046 rr-phpd 44233 |
| Copyright terms: Public domain | W3C validator |