MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss2 Structured version   Visualization version   GIF version

Theorem dfpss2 4063
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
dfpss2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))

Proof of Theorem dfpss2
StepHypRef Expression
1 df-pss 3946 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 df-ne 2933 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32anbi2i 623 . 2 ((𝐴𝐵𝐴𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
41, 3bitri 275 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wne 2932  wss 3926  wpss 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2933  df-pss 3946
This theorem is referenced by:  dfpss3  4064  sspss  4077  psstr  4082  npss  4088  ssnelpss  4089  pssv  4424  disj4  4434  f1imapss  7258  pssnn  9180  phpeqd  9224  phpeqdOLD  9232  nnsdomo  9240  inf3lem6  9645  ssfin4  10322  fin23lem25  10336  fin23lem38  10361  isf32lem2  10366  pwfseqlem4  10674  genpcl  11020  prlem934  11045  ltaddpr  11046  sltlpss  27862  chnlei  31412  cvbr2  32210  cvnbtwn2  32214  cvnbtwn3  32215  cvnbtwn4  32216  dfon2lem3  35749  dfon2lem5  35751  dfon2lem6  35752  dfon2lem7  35753  dfon2lem8  35754  dfon3  35856  lcvbr2  38986  lcvnbtwn2  38991  lcvnbtwn3  38992  rr-phpd  44180
  Copyright terms: Public domain W3C validator