| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3917 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2928 ⊆ wss 3897 ⊊ wpss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2929 df-pss 3917 |
| This theorem is referenced by: dfpss3 4036 sspss 4049 psstr 4054 npss 4060 ssnelpss 4061 pssv 4396 disj4 4406 f1imapss 7200 pssnn 9078 phpeqd 9121 nnsdomo 9127 inf3lem6 9523 ssfin4 10201 fin23lem25 10215 fin23lem38 10240 isf32lem2 10245 pwfseqlem4 10553 genpcl 10899 prlem934 10924 ltaddpr 10925 sltlpss 27853 chnlei 31465 cvbr2 32263 cvnbtwn2 32267 cvnbtwn3 32268 cvnbtwn4 32269 dfon2lem3 35827 dfon2lem5 35829 dfon2lem6 35830 dfon2lem7 35831 dfon2lem8 35832 dfon3 35934 lcvbr2 39069 lcvnbtwn2 39074 lcvnbtwn3 39075 rr-phpd 44250 |
| Copyright terms: Public domain | W3C validator |