![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3996 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2947 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 622 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2946 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2947 df-pss 3996 |
This theorem is referenced by: dfpss3 4112 sspss 4125 psstr 4130 npss 4136 ssnelpss 4137 pssv 4472 disj4 4482 f1imapss 7303 pssnn 9234 phpeqd 9278 phpeqdOLD 9288 nnsdomo 9297 inf3lem6 9702 ssfin4 10379 fin23lem25 10393 fin23lem38 10418 isf32lem2 10423 pwfseqlem4 10731 genpcl 11077 prlem934 11102 ltaddpr 11103 sltlpss 27963 chnlei 31517 cvbr2 32315 cvnbtwn2 32319 cvnbtwn3 32320 cvnbtwn4 32321 dfon2lem3 35749 dfon2lem5 35751 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon3 35856 lcvbr2 38978 lcvnbtwn2 38983 lcvnbtwn3 38984 rr-phpd 44172 |
Copyright terms: Public domain | W3C validator |