| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3937 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2927 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2926 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2927 df-pss 3937 |
| This theorem is referenced by: dfpss3 4055 sspss 4068 psstr 4073 npss 4079 ssnelpss 4080 pssv 4415 disj4 4425 f1imapss 7244 pssnn 9138 phpeqd 9182 nnsdomo 9188 inf3lem6 9593 ssfin4 10270 fin23lem25 10284 fin23lem38 10309 isf32lem2 10314 pwfseqlem4 10622 genpcl 10968 prlem934 10993 ltaddpr 10994 sltlpss 27826 chnlei 31421 cvbr2 32219 cvnbtwn2 32223 cvnbtwn3 32224 cvnbtwn4 32225 dfon2lem3 35780 dfon2lem5 35782 dfon2lem6 35783 dfon2lem7 35784 dfon2lem8 35785 dfon3 35887 lcvbr2 39022 lcvnbtwn2 39027 lcvnbtwn3 39028 rr-phpd 44205 |
| Copyright terms: Public domain | W3C validator |