| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3946 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2932 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2933 df-pss 3946 |
| This theorem is referenced by: dfpss3 4064 sspss 4077 psstr 4082 npss 4088 ssnelpss 4089 pssv 4424 disj4 4434 f1imapss 7258 pssnn 9180 phpeqd 9224 phpeqdOLD 9232 nnsdomo 9240 inf3lem6 9645 ssfin4 10322 fin23lem25 10336 fin23lem38 10361 isf32lem2 10366 pwfseqlem4 10674 genpcl 11020 prlem934 11045 ltaddpr 11046 sltlpss 27862 chnlei 31412 cvbr2 32210 cvnbtwn2 32214 cvnbtwn3 32215 cvnbtwn4 32216 dfon2lem3 35749 dfon2lem5 35751 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon3 35856 lcvbr2 38986 lcvnbtwn2 38991 lcvnbtwn3 38992 rr-phpd 44180 |
| Copyright terms: Public domain | W3C validator |