MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss2 Structured version   Visualization version   GIF version

Theorem dfpss2 4035
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
dfpss2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))

Proof of Theorem dfpss2
StepHypRef Expression
1 df-pss 3917 . 2 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
2 df-ne 2929 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32anbi2i 623 . 2 ((𝐴𝐵𝐴𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
41, 3bitri 275 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wne 2928  wss 3897  wpss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-ne 2929  df-pss 3917
This theorem is referenced by:  dfpss3  4036  sspss  4049  psstr  4054  npss  4060  ssnelpss  4061  pssv  4396  disj4  4406  f1imapss  7200  pssnn  9078  phpeqd  9121  nnsdomo  9127  inf3lem6  9523  ssfin4  10201  fin23lem25  10215  fin23lem38  10240  isf32lem2  10245  pwfseqlem4  10553  genpcl  10899  prlem934  10924  ltaddpr  10925  sltlpss  27853  chnlei  31465  cvbr2  32263  cvnbtwn2  32267  cvnbtwn3  32268  cvnbtwn4  32269  dfon2lem3  35827  dfon2lem5  35829  dfon2lem6  35830  dfon2lem7  35831  dfon2lem8  35832  dfon3  35934  lcvbr2  39069  lcvnbtwn2  39074  lcvnbtwn3  39075  rr-phpd  44250
  Copyright terms: Public domain W3C validator