| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3923 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3903 ⊊ wpss 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 df-pss 3923 |
| This theorem is referenced by: dfpss3 4040 sspss 4053 psstr 4058 npss 4064 ssnelpss 4065 pssv 4400 disj4 4410 f1imapss 7203 pssnn 9082 phpeqd 9126 nnsdomo 9132 inf3lem6 9529 ssfin4 10204 fin23lem25 10218 fin23lem38 10243 isf32lem2 10248 pwfseqlem4 10556 genpcl 10902 prlem934 10927 ltaddpr 10928 sltlpss 27822 chnlei 31429 cvbr2 32227 cvnbtwn2 32231 cvnbtwn3 32232 cvnbtwn4 32233 dfon2lem3 35759 dfon2lem5 35761 dfon2lem6 35762 dfon2lem7 35763 dfon2lem8 35764 dfon3 35866 lcvbr2 39001 lcvnbtwn2 39006 lcvnbtwn3 39007 rr-phpd 44182 |
| Copyright terms: Public domain | W3C validator |