| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
| Ref | Expression |
|---|---|
| dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3931 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 ⊆ wss 3911 ⊊ wpss 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 df-pss 3931 |
| This theorem is referenced by: dfpss3 4048 sspss 4061 psstr 4066 npss 4072 ssnelpss 4073 pssv 4408 disj4 4418 f1imapss 7223 pssnn 9109 phpeqd 9153 nnsdomo 9159 inf3lem6 9562 ssfin4 10239 fin23lem25 10253 fin23lem38 10278 isf32lem2 10283 pwfseqlem4 10591 genpcl 10937 prlem934 10962 ltaddpr 10963 sltlpss 27795 chnlei 31387 cvbr2 32185 cvnbtwn2 32189 cvnbtwn3 32190 cvnbtwn4 32191 dfon2lem3 35746 dfon2lem5 35748 dfon2lem6 35749 dfon2lem7 35750 dfon2lem8 35751 dfon3 35853 lcvbr2 38988 lcvnbtwn2 38993 lcvnbtwn3 38994 rr-phpd 44171 |
| Copyright terms: Public domain | W3C validator |