MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwvabrel Structured version   Visualization version   GIF version

Theorem pwvabrel 5689
Description: The powerclass of the cartesian square of the universal class is the class of all sets which are binary relations. (Contributed by BJ, 21-Dec-2023.)
Assertion
Ref Expression
pwvabrel 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥}

Proof of Theorem pwvabrel
StepHypRef Expression
1 pwvrel 5688 . . 3 (𝑥 ∈ V → (𝑥 ∈ 𝒫 (V × V) ↔ Rel 𝑥))
21elv 3452 . 2 (𝑥 ∈ 𝒫 (V × V) ↔ Rel 𝑥)
32eqabi 2863 1 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  𝒫 cpw 4563   × cxp 5636  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-pw 4565  df-rel 5645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator