![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwvabrel | Structured version Visualization version GIF version |
Description: The powerclass of the cartesian square of the universal class is the class of all sets which are binary relations. (Contributed by BJ, 21-Dec-2023.) |
Ref | Expression |
---|---|
pwvabrel | ⊢ 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwvrel 5732 | . . 3 ⊢ (𝑥 ∈ V → (𝑥 ∈ 𝒫 (V × V) ↔ Rel 𝑥)) | |
2 | 1 | elv 3468 | . 2 ⊢ (𝑥 ∈ 𝒫 (V × V) ↔ Rel 𝑥) |
3 | 2 | eqabi 2862 | 1 ⊢ 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2703 Vcvv 3462 𝒫 cpw 4607 × cxp 5680 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-ss 3964 df-pw 4609 df-rel 5689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |