MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwvabrel Structured version   Visualization version   GIF version

Theorem pwvabrel 5665
Description: The powerclass of the cartesian square of the universal class is the class of all sets which are binary relations. (Contributed by BJ, 21-Dec-2023.)
Assertion
Ref Expression
pwvabrel 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥}

Proof of Theorem pwvabrel
StepHypRef Expression
1 pwvrel 5664 . . 3 (𝑥 ∈ V → (𝑥 ∈ 𝒫 (V × V) ↔ Rel 𝑥))
21elv 3441 . 2 (𝑥 ∈ 𝒫 (V × V) ↔ Rel 𝑥)
32eqabi 2866 1 𝒫 (V × V) = {𝑥 ∣ Rel 𝑥}
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  𝒫 cpw 4547   × cxp 5612  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-pw 4549  df-rel 5621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator