![]() |
Metamath
Proof Explorer Theorem List (p. 58 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43661) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | resmptf 5701 | Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | resmptd 5702* | Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | dfres2 5703* | Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | ||
Theorem | mptss 5704* | Sufficient condition for inclusion in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | elidinxp 5705* | Characterization of elements of the intersection of identity relation with Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)𝐶 = 〈𝑥, 𝑥〉) | ||
Theorem | elidinxpid 5706* | Characterization of elements of the intersection of identity relation with square Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) | ||
Theorem | elrid 5707* | Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) | ||
Theorem | elridOLD 5708* | Obsolete proof of elrid 5707 as of 15-Sep-2022. (Contributed by BJ, 28-Aug-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) | ||
Theorem | idinxpres 5709 | The intersection of the identity function with a square cross product. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
⊢ ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴) | ||
Theorem | idssxp 5710 | A diagonal set as a subset of a Cartesian product. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.) |
⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | ||
Theorem | opabresid 5711* | The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.) |
⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) | ||
Theorem | mptresid 5712* | The restricted identity expressed with the maps-to notation. (Contributed by FL, 25-Apr-2012.) |
⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) | ||
Theorem | dmresi 5713 | The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ dom ( I ↾ 𝐴) = 𝐴 | ||
Theorem | restidsing 5714 | Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.) |
⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | ||
Theorem | imaeq1 5715 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2 5716 | Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq1i 5717 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) | ||
Theorem | imaeq2i 5718 | Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 “ 𝐴) = (𝐶 “ 𝐵) | ||
Theorem | imaeq1d 5719 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | ||
Theorem | imaeq2d 5720 | Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | ||
Theorem | imaeq12d 5721 | Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) | ||
Theorem | dfima2 5722* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | ||
Theorem | dfima3 5723* | Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | ||
Theorem | elimag 5724* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | ||
Theorem | elima 5725* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) | ||
Theorem | elima2 5726* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝐴)) | ||
Theorem | elima3 5727* | Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 〈𝑥, 𝐴〉 ∈ 𝐵)) | ||
Theorem | nfima 5728 | Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 “ 𝐵) | ||
Theorem | nfimad 5729 | Deduction version of bound-variable hypothesis builder nfima 5728. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) | ||
Theorem | imadmrn 5730 | The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 “ dom 𝐴) = ran 𝐴 | ||
Theorem | imassrn 5731 | The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | ||
Theorem | imai 5732 | Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.) |
⊢ ( I “ 𝐴) = 𝐴 | ||
Theorem | rnresi 5733 | The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
⊢ ran ( I ↾ 𝐴) = 𝐴 | ||
Theorem | resiima 5734 | The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.) |
⊢ (𝐵 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵) | ||
Theorem | ima0 5735 | Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.) |
⊢ (𝐴 “ ∅) = ∅ | ||
Theorem | 0ima 5736 | Image under the empty relation. (Contributed by FL, 11-Jan-2007.) |
⊢ (∅ “ 𝐴) = ∅ | ||
Theorem | csbima12 5737 | Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | imadisj 5738 | A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.) |
⊢ ((𝐴 “ 𝐵) = ∅ ↔ (dom 𝐴 ∩ 𝐵) = ∅) | ||
Theorem | cnvimass 5739 | A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
⊢ (◡𝐴 “ 𝐵) ⊆ dom 𝐴 | ||
Theorem | cnvimarndm 5740 | The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (◡𝐴 “ ran 𝐴) = dom 𝐴 | ||
Theorem | imasng 5741* | The image of a singleton. (Contributed by NM, 8-May-2005.) |
⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | relimasn 5742* | The image of a singleton. (Contributed by NM, 20-May-1998.) |
⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | elrelimasn 5743 | Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) | ||
Theorem | elimasn 5744 | Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | ||
Theorem | elimasng 5745 | Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) | ||
Theorem | elimasni 5746 | Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.) |
⊢ (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶) | ||
Theorem | args 5747* | Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6443 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} | ||
Theorem | eliniseg 5748 | Membership in an initial segment. The idiom (◡𝐴 “ {𝐵}), meaning {𝑥 ∣ 𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | epini 5749 | Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (◡ E “ {𝐴}) = 𝐴 | ||
Theorem | iniseg 5750* | An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) |
⊢ (𝐵 ∈ 𝑉 → (◡𝐴 “ {𝐵}) = {𝑥 ∣ 𝑥𝐴𝐵}) | ||
Theorem | inisegn0 5751 | Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ (𝐴 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝐴}) ≠ ∅) | ||
Theorem | dffr3 5752* | Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | ||
Theorem | dfse2 5753* | Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | ||
Theorem | imass1 5754 | Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) | ||
Theorem | imass2 5755 | Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) | ||
Theorem | ndmima 5756 | The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) | ||
Theorem | relcnv 5757 | A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
⊢ Rel ◡𝐴 | ||
Theorem | relbrcnvg 5758 | When 𝑅 is a relation, the sethood assumptions on brcnv 5550 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | eliniseg2 5759 | Eliminate the class existence constraint in eliniseg 5748. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | ||
Theorem | relbrcnv 5760 | When 𝑅 is a relation, the sethood assumptions on brcnv 5550 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) | ||
Theorem | cotrg 5761* | Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 5762 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 5762. (Revised by Richard Penner, 24-Dec-2019.) |
⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | ||
Theorem | cotr 5762* | Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 5761. (Contributed by NM, 27-Dec-1996.) |
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | ||
Theorem | idrefALT 5763* | Alternate proof of idref 6677 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
Theorem | idrefOLD 5764* | Obsolete version of idref 6677 and idrefALT 5763 as of 27-Aug-2022. (Contributed by FL, 15-Jan-2012.) (Revised by NM, 30-Mar-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) | ||
Theorem | cnvsym 5765* | Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | ||
Theorem | intasym 5766* | Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
Theorem | asymref 5767* | Two ways of saying a relation is antisymmetric and reflexive. ∪ ∪ 𝑅 is the field of a relation by relfld 5915. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) | ||
Theorem | asymref2 5768* | Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | ||
Theorem | intirr 5769* | Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥) | ||
Theorem | brcodir 5770* | Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) | ||
Theorem | codir 5771* | Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) | ||
Theorem | qfto 5772* | A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.) |
⊢ ((𝐴 × 𝐵) ⊆ (𝑅 ∪ ◡𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)) | ||
Theorem | xpidtr 5773 | A square Cartesian product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) | ||
Theorem | trin2 5774 | The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.) |
⊢ (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆) → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ (𝑅 ∩ 𝑆)) | ||
Theorem | poirr2 5775 | A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) | ||
Theorem | trinxp 5776 | The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square Cartesian product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.) |
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) | ||
Theorem | soirri 5777 | A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ 𝐴𝑅𝐴 | ||
Theorem | sotri 5778 | A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
Theorem | son2lpi 5779 | A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) | ||
Theorem | sotri2 5780 | A transitivity relation. (Read 𝐴 ≤ 𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | ||
Theorem | sotri3 5781 | A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
⊢ 𝑅 Or 𝑆 & ⊢ 𝑅 ⊆ (𝑆 × 𝑆) ⇒ ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) | ||
Theorem | poleloe 5782 | Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | poltletr 5783 | Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) | ||
Theorem | somin1 5784 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴) | ||
Theorem | somincom 5785 | Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴)) | ||
Theorem | somin2 5786 | Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵) | ||
Theorem | soltmin 5787 | Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑅𝐶))) | ||
Theorem | cnvopab 5788* | The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} | ||
Theorem | mptcnv 5789* | The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐷))) ⇒ ⊢ (𝜑 → ◡(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | cnv0 5790 | The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5017, ax-nul 5025, ax-pr 5138. (Revised by KP, 25-Oct-2021.) |
⊢ ◡∅ = ∅ | ||
Theorem | cnvi 5791 | The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡ I = I | ||
Theorem | cnvun 5792 | The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | ||
Theorem | cnvdif 5793 | Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | ||
Theorem | cnvin 5794 | Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | ||
Theorem | rnun 5795 | Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) | ||
Theorem | rnin 5796 | The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) | ||
Theorem | rniun 5797 | The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 | ||
Theorem | rnuni 5798* | The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.) |
⊢ ran ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ran 𝑥 | ||
Theorem | imaundi 5799 | Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
⊢ (𝐴 “ (𝐵 ∪ 𝐶)) = ((𝐴 “ 𝐵) ∪ (𝐴 “ 𝐶)) | ||
Theorem | imaundir 5800 | The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |