HomeHome Metamath Proof Explorer
Theorem List (p. 58 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 5701-5800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeqrelriv 5701* Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)       ((Rel 𝐴 ∧ Rel 𝐵) → 𝐴 = 𝐵)
 
Theoremeqrelriiv 5702* Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Rel 𝐴    &   Rel 𝐵    &   (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)       𝐴 = 𝐵
 
Theoremeqbrriv 5703* Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Rel 𝐴    &   Rel 𝐵    &   (𝑥𝐴𝑦𝑥𝐵𝑦)       𝐴 = 𝐵
 
Theoremeqrelrdv 5704* Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Rel 𝐴    &   Rel 𝐵    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqbrrdv 5705* Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
(𝜑 → Rel 𝐴)    &   (𝜑 → Rel 𝐵)    &   (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))       (𝜑𝐴 = 𝐵)
 
Theoremeqbrrdiv 5706* Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
Rel 𝐴    &   Rel 𝐵    &   (𝜑 → (𝑥𝐴𝑦𝑥𝐵𝑦))       (𝜑𝐴 = 𝐵)
 
Theoremeqrelrdv2 5707* A version of eqrelrdv 5704. (Contributed by Rodolfo Medina, 10-Oct-2010.)
(𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))       (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵)
 
Theoremssrelrel 5708* A subclass relationship determined by ordered triples. Use relrelss 6180 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
 
Theoremeqrelrel 5709* Extensionality principle for ordered triples (used by 2-place operations df-oprab 7288), analogous to eqrel 5696. Use relrelss 6180 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
 
Theoremelrel 5710* A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
 
Theoremrel0 5711 The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Rel ∅
 
Theoremnrelv 5712 The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.)
¬ Rel V
 
Theoremrelsng 5713 A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013.) (Revised by BJ, 12-Feb-2022.)
(𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
 
Theoremrelsnb 5714 An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023.)
(Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)))
 
Theoremrelsnopg 5715 A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.)
((𝐴𝑉𝐵𝑊) → Rel {⟨𝐴, 𝐵⟩})
 
Theoremrelsn 5716 A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
𝐴 ∈ V       (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
 
Theoremrelsnop 5717 A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       Rel {⟨𝐴, 𝐵⟩}
 
Theoremcopsex2gb 5718* Implicit substitution inference for ordered pairs. Compare copsex2ga 5719. (Contributed by NM, 12-Mar-2014.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
 
Theoremcopsex2ga 5719* Implicit substitution inference for ordered pairs. Compare copsex2g 5408. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       (𝐴 ∈ (𝑉 × 𝑊) → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
 
Theoremelopaba 5720* Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))       (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
 
Theoremxpsspw 5721 A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
(𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
 
Theoremunixpss 5722 The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
(𝐴 × 𝐵) ⊆ (𝐴𝐵)
 
Theoremrelun 5723 The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
(Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
 
Theoremrelin1 5724 The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
(Rel 𝐴 → Rel (𝐴𝐵))
 
Theoremrelin2 5725 The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
(Rel 𝐵 → Rel (𝐴𝐵))
 
Theoremrelinxp 5726 Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.)
Rel (𝑅 ∩ (𝐴 × 𝐵))
 
Theoremreldif 5727 A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
(Rel 𝐴 → Rel (𝐴𝐵))
 
Theoremreliun 5728 An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
(Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
 
Theoremreliin 5729 An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
(∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
 
Theoremreluni 5730* The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
(Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
 
Theoremrelint 5731* The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
(∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
 
Theoremrelopabiv 5732* A class of ordered pairs is a relation. For a version without a disjoint variable condition, but a longer proof using ax-11 2155 and ax-12 2172, see relopabi 5734. (Contributed by BJ, 22-Jul-2023.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       Rel 𝐴
 
Theoremrelopabv 5733* A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2155 and ax-12 2172, see relopab 5736. (Contributed by SN, 8-Sep-2024.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremrelopabi 5734 A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) Remove dependency on ax-sep 5224, ax-nul 5231, ax-pr 5353. (Revised by KP, 25-Oct-2021.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       Rel 𝐴
 
TheoremrelopabiALT 5735 Alternate proof of relopabi 5734 (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}       Rel 𝐴
 
Theoremrelopab 5736 A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) Remove disjoint variable conditions. (Revised by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremmptrel 5737 The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.)
Rel (𝑥𝐴𝐵)
 
Theoremreli 5738 The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Rel I
 
Theoremrele 5739 The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Rel E
 
Theoremopabid2 5740* A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
(Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
 
Theoreminopab 5741* Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
 
Theoremdifopab 5742* Difference of two ordered-pair class abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Proof shortened by SN, 19-Dec-2024.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
 
TheoremdifopabOLD 5743* Obsolete version of difopab 5742 as of 19-Dec-2024. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoreminxp 5744 Intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴 × 𝐵) ∩ (𝐶 × 𝐷)) = ((𝐴𝐶) × (𝐵𝐷))
 
Theoremxpindi 5745 Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∩ (𝐴 × 𝐶))
 
Theoremxpindir 5746 Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∩ (𝐵 × 𝐶))
 
Theoremxpiindi 5747* Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
(𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
 
Theoremxpriindi 5748* Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
(𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
 
Theoremeliunxp 5749* Membership in a union of Cartesian products. Analogue of elxp 5613 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
 
Theoremopeliunxp2 5750* Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.)
(𝑥 = 𝐶𝐵 = 𝐸)       (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
 
Theoremraliunxp 5751* Write a double restricted quantification as one universal quantifier. In this version of ralxp 5753, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexiunxp 5752* Write a double restricted quantification as one universal quantifier. In this version of rexxp 5754, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 𝑦𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremralxp 5753* Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexxp 5754* Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremexopxfr 5755* Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
 
Theoremexopxfr2 5756* Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
(𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
 
Theoremdjussxp 5757* Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
 
Theoremralxpf 5758* Version of ralxp 5753 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑧𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
 
Theoremrexxpf 5759* Version of rexxp 5754 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑧𝜑    &   𝑥𝜓    &   (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))       (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
 
Theoremiunxpf 5760* Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
𝑦𝐶    &   𝑧𝐶    &   𝑥𝐷    &   (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)        𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
 
Theoremopabbi2dv 5761* Deduce equality of a relation and an ordered-pair class abstraction. Compare abbi2dv 2878. (Contributed by NM, 24-Feb-2014.)
Rel 𝐴    &   (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))       (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
 
Theoremrelop 5762* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) A relation is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a relation is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is relsnopg 5715, as funsng 6492 is to funop 7030. (New usage is discouraged.)
𝐴 ∈ V    &   𝐵 ∈ V       (Rel ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑦(𝐴 = {𝑥} ∧ 𝐵 = {𝑥, 𝑦}))
 
Theoremideqg 5763 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐵𝑉 → (𝐴 I 𝐵𝐴 = 𝐵))
 
Theoremideq 5764 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
𝐵 ∈ V       (𝐴 I 𝐵𝐴 = 𝐵)
 
Theoremididg 5765 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝑉𝐴 I 𝐴)
 
Theoremissetid 5766 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 ∈ V ↔ 𝐴 I 𝐴)
 
Theoremcoss1 5767 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremcoss2 5768 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremcoeq1 5769 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremcoeq2 5770 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremcoeq1i 5771 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremcoeq2i 5772 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremcoeq1d 5773 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremcoeq2d 5774 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremcoeq12i 5775 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremcoeq12d 5776 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremnfco 5777 Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theorembrcog 5778* Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
 
Theoremopelco2g 5779* Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶)))
 
Theorembrcogw 5780 Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
(((𝐴𝑉𝐵𝑊𝑋𝑍) ∧ (𝐴𝐷𝑋𝑋𝐶𝐵)) → 𝐴(𝐶𝐷)𝐵)
 
Theoremeqbrrdva 5781* Deduction from extensionality principle for relations, given an equivalence only on the relation domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
(𝜑𝐴 ⊆ (𝐶 × 𝐷))    &   (𝜑𝐵 ⊆ (𝐶 × 𝐷))    &   ((𝜑𝑥𝐶𝑦𝐷) → (𝑥𝐴𝑦𝑥𝐵𝑦))       (𝜑𝐴 = 𝐵)
 
Theorembrco 5782* Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
 
Theoremopelco 5783* Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
 
Theoremcnvss 5784 Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
(𝐴𝐵𝐴𝐵)
 
Theoremcnveq 5785 Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.)
(𝐴 = 𝐵𝐴 = 𝐵)
 
Theoremcnveqi 5786 Equality inference for converse relation. (Contributed by NM, 23-Dec-2008.)
𝐴 = 𝐵       𝐴 = 𝐵
 
Theoremcnveqd 5787 Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremelcnv 5788* Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
(𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
 
Theoremelcnv2 5789* Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
(𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
 
Theoremnfcnv 5790 Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴       𝑥𝐴
 
Theorembrcnvg 5791 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremopelcnvg 5792 Ordered-pair membership in converse relation. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
 
Theoremopelcnv 5793 Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
 
Theorembrcnv 5794 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑅𝐵𝐵𝑅𝐴)
 
Theoremcsbcnv 5795 Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5796 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.)
𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹
 
TheoremcsbcnvgALT 5796 Move class substitution in and out of the converse of a relation. Version of csbcnv 5795 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
 
Theoremcnvco 5797 Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐵𝐴)
 
Theoremcnvuni 5798* The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
𝐴 = 𝑥𝐴 𝑥
 
Theoremdfdm3 5799* Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
 
Theoremdfrn2 5800* Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >