| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex12 | Structured version Visualization version GIF version | ||
| Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelex12 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5626 | . . . . 5 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
| 3 | 2 | ssbrd 5135 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴(V × V)𝐵)) |
| 4 | 3 | imp 406 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴(V × V)𝐵) |
| 5 | brxp 5668 | . 2 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 5 | sylib 218 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: brrelex1 5672 brrelex2 5673 brrelex12i 5674 relbrcnvg 6056 brovex 8155 ersym 8637 relelec 8672 fpwwe2lem2 10526 fpwwelem 10539 cofuval2 17794 isnat 17857 pslem 18478 frgpuplem 19651 perpln1 28659 perpln2 28660 poprelb 47528 precofval3 49376 |
| Copyright terms: Public domain | W3C validator |