Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex12 | Structured version Visualization version GIF version |
Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelex12 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5587 | . . . . 5 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | ssbrd 5113 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴(V × V)𝐵)) |
4 | 3 | imp 406 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴(V × V)𝐵) |
5 | brxp 5627 | . 2 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | sylib 217 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: brrelex1 5631 brrelex2 5632 brrelex12i 5633 relbrcnvg 6002 brovex 8009 ersym 8468 relelec 8501 fpwwe2lem2 10319 fpwwelem 10332 cofuval2 17518 isnat 17579 pslem 18205 frgpuplem 19293 perpln1 26975 perpln2 26976 poprelb 44864 |
Copyright terms: Public domain | W3C validator |