![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex12 | Structured version Visualization version GIF version |
Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelex12 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5707 | . . . . 5 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 216 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 2 | ssbrd 5209 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐴(V × V)𝐵)) |
4 | 3 | imp 406 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴(V × V)𝐵) |
5 | brxp 5749 | . 2 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | sylib 218 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: brrelex1 5753 brrelex2 5754 brrelex12i 5755 relbrcnvg 6135 brovex 8263 ersym 8775 relelec 8810 fpwwe2lem2 10701 fpwwelem 10714 cofuval2 17951 isnat 18015 pslem 18642 frgpuplem 19814 perpln1 28736 perpln2 28737 poprelb 47398 |
Copyright terms: Public domain | W3C validator |