MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex12 Structured version   Visualization version   GIF version

Theorem brrelex12 5630
Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 5587 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 215 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32ssbrd 5113 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐴(V × V)𝐵))
43imp 406 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴(V × V)𝐵)
5 brxp 5627 . 2 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 5sylib 217 1 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  brrelex1  5631  brrelex2  5632  brrelex12i  5633  relbrcnvg  6002  brovex  8009  ersym  8468  relelec  8501  fpwwe2lem2  10319  fpwwelem  10332  cofuval2  17518  isnat  17579  pslem  18205  frgpuplem  19293  perpln1  26975  perpln2  26976  poprelb  44864
  Copyright terms: Public domain W3C validator