| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5092 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | opelxp 5652 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: brrelex12 5668 brel 5681 brinxp2 5694 eqbrrdva 5809 ssrelrn 5834 dmxp 5869 xpidtr 6069 xpco 6236 dfpo2 6243 predtrss 6269 isocnv3 7266 tpostpos 8176 brinxper 8651 swoer 8653 erinxp 8715 ecopover 8745 infxpenlem 9901 fpwwe2lem5 10523 fpwwe2lem6 10524 fpwwe2lem8 10526 fpwwe2lem11 10529 fpwwe2lem12 10530 fpwwe2 10531 ltxrlt 11180 ltxr 13011 xpcogend 14878 invfuc 17881 elhoma 17936 efglem 19626 gsumcom3fi 19889 gsumdixp 20235 znleval 21489 gsumbagdiag 21866 psrass1lem 21867 opsrtoslem2 21989 slenlt 27689 zsoring 28330 brelg 32585 posrasymb 32943 trleile 32947 ecxpid 33321 qusxpid 33323 metider 33902 satefvfmla1 35457 mclsppslem 35615 xpab 35758 dfon3 35925 brbigcup 35931 brsingle 35950 brimage 35959 brcart 35965 brapply 35971 brcup 35972 brcap 35973 funpartlem 35975 dfrdg4 35984 brub 35987 bj-xpcossxp 37222 itg2gt0cn 37714 grucollcld 44292 grumnud 44318 coxp 48863 xpco2 48887 |
| Copyright terms: Public domain | W3C validator |