![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version |
Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5148 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | opelxp 5724 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 |
This theorem is referenced by: brrelex12 5740 brel 5753 brinxp2 5765 eqbrrdva 5882 ssrelrn 5907 dmxp 5941 xpidtr 6144 xpco 6310 dfpo2 6317 predtrss 6344 isocnv3 7351 tpostpos 8269 brinxper 8772 swoer 8774 erinxp 8829 ecopover 8859 infxpenlem 10050 fpwwe2lem5 10672 fpwwe2lem6 10673 fpwwe2lem8 10675 fpwwe2lem11 10678 fpwwe2lem12 10679 fpwwe2 10680 ltxrlt 11328 ltxr 13154 xpcogend 15009 invfuc 18030 elhoma 18085 efglem 19748 gsumcom3fi 20011 gsumdixp 20332 znleval 21590 gsumbagdiag 21968 psrass1lem 21969 opsrtoslem2 22097 slenlt 27811 brelg 32628 posrasymb 32939 trleile 32945 ecxpid 33368 qusxpid 33370 metider 33854 satefvfmla1 35409 mclsppslem 35567 xpab 35705 dfon3 35873 brbigcup 35879 brsingle 35898 brimage 35907 brcart 35913 brapply 35919 brcup 35920 brcap 35921 funpartlem 35923 dfrdg4 35932 brub 35935 bj-xpcossxp 37171 itg2gt0cn 37661 grucollcld 44255 grumnud 44281 |
Copyright terms: Public domain | W3C validator |