Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version |
Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | opelxp 5616 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 |
This theorem is referenced by: brrelex12 5630 brel 5643 brinxp2 5655 eqbrrdva 5767 ssrelrn 5792 xpidtr 6016 xpco 6181 dfpo2 6188 predtrss 6214 isocnv3 7183 tpostpos 8033 swoer 8486 erinxp 8538 ecopover 8568 infxpenlem 9700 fpwwe2lem5 10322 fpwwe2lem6 10323 fpwwe2lem8 10325 fpwwe2lem11 10328 fpwwe2lem12 10329 fpwwe2 10330 ltxrlt 10976 ltxr 12780 xpcogend 14613 invfuc 17608 elhoma 17663 efglem 19237 gsumcom3fi 19495 gsumdixp 19763 znleval 20674 gsumbagdiagOLD 21052 psrass1lemOLD 21053 gsumbagdiag 21055 psrass1lem 21056 opsrtoslem2 21173 brelg 30850 posrasymb 31145 trleile 31151 ecxpid 31458 qusxpid 31461 metider 31746 satefvfmla1 33287 mclsppslem 33445 xpab 33579 slenlt 33882 dfon3 34121 brbigcup 34127 brsingle 34146 brimage 34155 brcart 34161 brapply 34167 brcup 34168 brcap 34169 funpartlem 34171 dfrdg4 34180 brub 34183 bj-xpcossxp 35287 itg2gt0cn 35759 grucollcld 41767 grumnud 41793 |
Copyright terms: Public domain | W3C validator |