Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version |
Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5075 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | opelxp 5625 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 |
This theorem is referenced by: brrelex12 5639 brel 5652 brinxp2 5664 eqbrrdva 5778 ssrelrn 5803 xpidtr 6027 xpco 6192 dfpo2 6199 predtrss 6225 isocnv3 7203 tpostpos 8062 swoer 8528 erinxp 8580 ecopover 8610 infxpenlem 9769 fpwwe2lem5 10391 fpwwe2lem6 10392 fpwwe2lem8 10394 fpwwe2lem11 10397 fpwwe2lem12 10398 fpwwe2 10399 ltxrlt 11045 ltxr 12851 xpcogend 14685 invfuc 17692 elhoma 17747 efglem 19322 gsumcom3fi 19580 gsumdixp 19848 znleval 20762 gsumbagdiagOLD 21142 psrass1lemOLD 21143 gsumbagdiag 21145 psrass1lem 21146 opsrtoslem2 21263 brelg 30949 posrasymb 31243 trleile 31249 ecxpid 31556 qusxpid 31559 metider 31844 satefvfmla1 33387 mclsppslem 33545 xpab 33677 slenlt 33955 dfon3 34194 brbigcup 34200 brsingle 34219 brimage 34228 brcart 34234 brapply 34240 brcup 34241 brcap 34242 funpartlem 34244 dfrdg4 34253 brub 34256 bj-xpcossxp 35360 itg2gt0cn 35832 grucollcld 41878 grumnud 41904 |
Copyright terms: Public domain | W3C validator |