| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5094 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | opelxp 5655 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 |
| This theorem is referenced by: brrelex12 5671 brel 5684 brinxp2 5697 eqbrrdva 5813 ssrelrn 5838 dmxp 5873 xpidtr 6073 xpco 6241 dfpo2 6248 predtrss 6274 isocnv3 7272 tpostpos 8182 brinxper 8657 swoer 8659 erinxp 8721 ecopover 8751 infxpenlem 9911 fpwwe2lem5 10533 fpwwe2lem6 10534 fpwwe2lem8 10536 fpwwe2lem11 10539 fpwwe2lem12 10540 fpwwe2 10541 ltxrlt 11190 ltxr 13016 xpcogend 14883 invfuc 17886 elhoma 17941 efglem 19630 gsumcom3fi 19893 gsumdixp 20239 znleval 21493 gsumbagdiag 21870 psrass1lem 21871 opsrtoslem2 21992 slenlt 27692 zsoring 28333 brelg 32592 posrasymb 32955 trleile 32959 ecxpid 33333 qusxpid 33335 metider 33928 satefvfmla1 35490 mclsppslem 35648 xpab 35791 dfon3 35955 brbigcup 35961 brsingle 35980 brimage 35989 brcart 35995 brapply 36001 brcup 36002 brcap 36003 funpartlem 36007 dfrdg4 36016 brub 36019 bj-xpcossxp 37254 itg2gt0cn 37735 grucollcld 44377 grumnud 44403 coxp 48957 xpco2 48981 |
| Copyright terms: Public domain | W3C validator |