| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | opelxp 5677 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: brrelex12 5693 brel 5706 brinxp2 5719 eqbrrdva 5836 ssrelrn 5861 dmxp 5895 xpidtr 6098 xpco 6265 dfpo2 6272 predtrss 6298 isocnv3 7310 tpostpos 8228 brinxper 8703 swoer 8705 erinxp 8767 ecopover 8797 infxpenlem 9973 fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwe2 10603 ltxrlt 11251 ltxr 13082 xpcogend 14947 invfuc 17946 elhoma 18001 efglem 19653 gsumcom3fi 19916 gsumdixp 20235 znleval 21471 gsumbagdiag 21847 psrass1lem 21848 opsrtoslem2 21970 slenlt 27671 brelg 32544 posrasymb 32898 trleile 32904 ecxpid 33339 qusxpid 33341 metider 33891 satefvfmla1 35419 mclsppslem 35577 xpab 35720 dfon3 35887 brbigcup 35893 brsingle 35912 brimage 35921 brcart 35927 brapply 35933 brcup 35934 brcap 35935 funpartlem 35937 dfrdg4 35946 brub 35949 bj-xpcossxp 37184 itg2gt0cn 37676 grucollcld 44256 grumnud 44282 coxp 48825 xpco2 48849 |
| Copyright terms: Public domain | W3C validator |