| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | opelxp 5674 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: brrelex12 5690 brel 5703 brinxp2 5716 eqbrrdva 5833 ssrelrn 5858 dmxp 5892 xpidtr 6095 xpco 6262 dfpo2 6269 predtrss 6295 isocnv3 7307 tpostpos 8225 brinxper 8700 swoer 8702 erinxp 8764 ecopover 8794 infxpenlem 9966 fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 ltxrlt 11244 ltxr 13075 xpcogend 14940 invfuc 17939 elhoma 17994 efglem 19646 gsumcom3fi 19909 gsumdixp 20228 znleval 21464 gsumbagdiag 21840 psrass1lem 21841 opsrtoslem2 21963 slenlt 27664 brelg 32537 posrasymb 32891 trleile 32897 ecxpid 33332 qusxpid 33334 metider 33884 satefvfmla1 35412 mclsppslem 35570 xpab 35713 dfon3 35880 brbigcup 35886 brsingle 35905 brimage 35914 brcart 35920 brapply 35926 brcup 35927 brcap 35928 funpartlem 35930 dfrdg4 35939 brub 35942 bj-xpcossxp 37177 itg2gt0cn 37669 grucollcld 44249 grumnud 44275 coxp 48821 xpco2 48845 |
| Copyright terms: Public domain | W3C validator |