| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5120 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | opelxp 5690 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: brrelex12 5706 brel 5719 brinxp2 5732 eqbrrdva 5849 ssrelrn 5874 dmxp 5908 xpidtr 6111 xpco 6278 dfpo2 6285 predtrss 6311 isocnv3 7325 tpostpos 8245 brinxper 8748 swoer 8750 erinxp 8805 ecopover 8835 infxpenlem 10027 fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 fpwwe2lem11 10655 fpwwe2lem12 10656 fpwwe2 10657 ltxrlt 11305 ltxr 13131 xpcogend 14993 invfuc 17990 elhoma 18045 efglem 19697 gsumcom3fi 19960 gsumdixp 20279 znleval 21515 gsumbagdiag 21891 psrass1lem 21892 opsrtoslem2 22014 slenlt 27716 brelg 32589 posrasymb 32945 trleile 32951 ecxpid 33376 qusxpid 33378 metider 33925 satefvfmla1 35447 mclsppslem 35605 xpab 35743 dfon3 35910 brbigcup 35916 brsingle 35935 brimage 35944 brcart 35950 brapply 35956 brcup 35957 brcap 35958 funpartlem 35960 dfrdg4 35969 brub 35972 bj-xpcossxp 37207 itg2gt0cn 37699 grucollcld 44284 grumnud 44310 coxp 48811 |
| Copyright terms: Public domain | W3C validator |