| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on a Cartesian product. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| brxp | ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5096 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 2 | opelxp 5659 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: brrelex12 5675 brel 5688 brinxp2 5701 eqbrrdva 5816 ssrelrn 5841 dmxp 5875 xpidtr 6075 xpco 6241 dfpo2 6248 predtrss 6274 isocnv3 7273 tpostpos 8186 brinxper 8661 swoer 8663 erinxp 8725 ecopover 8755 infxpenlem 9926 fpwwe2lem5 10548 fpwwe2lem6 10549 fpwwe2lem8 10551 fpwwe2lem11 10554 fpwwe2lem12 10555 fpwwe2 10556 ltxrlt 11204 ltxr 13035 xpcogend 14899 invfuc 17902 elhoma 17957 efglem 19613 gsumcom3fi 19876 gsumdixp 20222 znleval 21479 gsumbagdiag 21856 psrass1lem 21857 opsrtoslem2 21979 slenlt 27680 zsoring 28319 brelg 32570 posrasymb 32922 trleile 32926 ecxpid 33308 qusxpid 33310 metider 33860 satefvfmla1 35397 mclsppslem 35555 xpab 35698 dfon3 35865 brbigcup 35871 brsingle 35890 brimage 35899 brcart 35905 brapply 35911 brcup 35912 brcap 35913 funpartlem 35915 dfrdg4 35924 brub 35927 bj-xpcossxp 37162 itg2gt0cn 37654 grucollcld 44233 grumnud 44259 coxp 48818 xpco2 48842 |
| Copyright terms: Public domain | W3C validator |