MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsex Structured version   Visualization version   GIF version

Theorem qsex 8565
Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
qsex.1 𝐴 ∈ V
Assertion
Ref Expression
qsex (𝐴 / 𝑅) ∈ V

Proof of Theorem qsex
StepHypRef Expression
1 qsex.1 . 2 𝐴 ∈ V
2 qsexg 8564 . 2 (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V)
31, 2ax-mp 5 1 (𝐴 / 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-rep 5209
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-qs 8504
This theorem is referenced by:  prjspval  40442
  Copyright terms: Public domain W3C validator