Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qsex | Structured version Visualization version GIF version |
Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
qsex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
qsex | ⊢ (𝐴 / 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | qsexg 8613 | . 2 ⊢ (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 / 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3440 / cqs 8546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-rep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-v 3442 df-qs 8553 |
This theorem is referenced by: prjspval 40663 |
Copyright terms: Public domain | W3C validator |