| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsex | Structured version Visualization version GIF version | ||
| Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| qsex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| qsex | ⊢ (𝐴 / 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | qsexg 8702 | . 2 ⊢ (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 / 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 / cqs 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-rep 5219 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-qs 8634 |
| This theorem is referenced by: prjspval 42702 |
| Copyright terms: Public domain | W3C validator |