MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsex Structured version   Visualization version   GIF version

Theorem qsex 8692
Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
qsex.1 𝐴 ∈ V
Assertion
Ref Expression
qsex (𝐴 / 𝑅) ∈ V

Proof of Theorem qsex
StepHypRef Expression
1 qsex.1 . 2 𝐴 ∈ V
2 qsexg 8691 . 2 (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V)
31, 2ax-mp 5 1 (𝐴 / 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3434   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-rep 5215
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2067  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3436  df-qs 8623
This theorem is referenced by:  prjspval  42615
  Copyright terms: Public domain W3C validator