MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsex Structured version   Visualization version   GIF version

Theorem qsex 8746
Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
qsex.1 𝐴 ∈ V
Assertion
Ref Expression
qsex (𝐴 / 𝑅) ∈ V

Proof of Theorem qsex
StepHypRef Expression
1 qsex.1 . 2 𝐴 ∈ V
2 qsexg 8745 . 2 (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V)
31, 2ax-mp 5 1 (𝐴 / 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-rep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3449  df-qs 8677
This theorem is referenced by:  prjspval  42591
  Copyright terms: Public domain W3C validator