MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsex Structured version   Visualization version   GIF version

Theorem qsex 8767
Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
qsex.1 𝐴 ∈ V
Assertion
Ref Expression
qsex (𝐴 / 𝑅) ∈ V

Proof of Theorem qsex
StepHypRef Expression
1 qsex.1 . 2 𝐴 ∈ V
2 qsexg 8766 . 2 (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V)
31, 2ax-mp 5 1 (𝐴 / 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3466   / cqs 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-rep 5276
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-rex 3063  df-v 3468  df-qs 8706
This theorem is referenced by:  prjspval  41859
  Copyright terms: Public domain W3C validator