MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs Structured version   Visualization version   GIF version

Theorem uniqs 8796
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))

Proof of Theorem uniqs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 8728 . . . . 5 (𝑅𝑉 → [𝑥]𝑅 ∈ V)
21ralrimivw 3137 . . . 4 (𝑅𝑉 → ∀𝑥𝐴 [𝑥]𝑅 ∈ V)
3 dfiun2g 5011 . . . 4 (∀𝑥𝐴 [𝑥]𝑅 ∈ V → 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
42, 3syl 17 . . 3 (𝑅𝑉 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
54eqcomd 2742 . 2 (𝑅𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = 𝑥𝐴 [𝑥]𝑅)
6 df-qs 8730 . . 3 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
76unieqi 4900 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
8 df-ec 8726 . . . . 5 [𝑥]𝑅 = (𝑅 “ {𝑥})
98a1i 11 . . . 4 (𝑥𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥}))
109iuneq2i 4994 . . 3 𝑥𝐴 [𝑥]𝑅 = 𝑥𝐴 (𝑅 “ {𝑥})
11 imaiun 7242 . . 3 (𝑅 𝑥𝐴 {𝑥}) = 𝑥𝐴 (𝑅 “ {𝑥})
12 iunid 5041 . . . 4 𝑥𝐴 {𝑥} = 𝐴
1312imaeq2i 6050 . . 3 (𝑅 𝑥𝐴 {𝑥}) = (𝑅𝐴)
1410, 11, 133eqtr2ri 2766 . 2 (𝑅𝐴) = 𝑥𝐴 [𝑥]𝑅
155, 7, 143eqtr4g 2796 1 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  {csn 4606   cuni 4888   ciun 4972  cima 5662  [cec 8722   / cqs 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730
This theorem is referenced by:  uniqs2  8798  ecqs  8800
  Copyright terms: Public domain W3C validator