![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniqs | Structured version Visualization version GIF version |
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.) |
Ref | Expression |
---|---|
uniqs | ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecexg 8728 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → [𝑥]𝑅 ∈ V) | |
2 | 1 | ralrimivw 3147 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V) |
3 | dfiun2g 5033 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) |
5 | 4 | eqcomd 2734 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅) |
6 | df-qs 8730 | . . 3 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
7 | 6 | unieqi 4920 | . 2 ⊢ ∪ (𝐴 / 𝑅) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
8 | df-ec 8726 | . . . . 5 ⊢ [𝑥]𝑅 = (𝑅 “ {𝑥}) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥})) |
10 | 9 | iuneq2i 5017 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) |
11 | imaiun 7255 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) | |
12 | iunid 5063 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
13 | 12 | imaeq2i 6061 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = (𝑅 “ 𝐴) |
14 | 10, 11, 13 | 3eqtr2ri 2763 | . 2 ⊢ (𝑅 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 |
15 | 5, 7, 14 | 3eqtr4g 2793 | 1 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2705 ∀wral 3058 ∃wrex 3067 Vcvv 3471 {csn 4629 ∪ cuni 4908 ∪ ciun 4996 “ cima 5681 [cec 8722 / cqs 8723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8726 df-qs 8730 |
This theorem is referenced by: uniqs2 8797 ecqs 8799 |
Copyright terms: Public domain | W3C validator |