| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniqs | Structured version Visualization version GIF version | ||
| Description: The union of a quotient set, like uniqsw 8708 but with a weaker antecedent: only the restriction of 𝑅 by 𝐴 needs to be a set, not 𝑅 itself, see e.g. cnvepima 38442. (Contributed by NM, 9-Dec-2008.) (Revised by Peter Mazsa, 20-Jun-2019.) |
| Ref | Expression |
|---|---|
| uniqs | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecex 8681 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝑥 ∈ 𝐴 → [𝑥]𝑅 ∈ V)) | |
| 2 | 1 | ralrimiv 3124 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V) |
| 3 | dfiun2g 4982 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) |
| 5 | 4 | eqcomd 2739 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅) |
| 6 | df-qs 8637 | . . 3 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 7 | 6 | unieqi 4872 | . 2 ⊢ ∪ (𝐴 / 𝑅) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 8 | df-ec 8633 | . . . . 5 ⊢ [𝑥]𝑅 = (𝑅 “ {𝑥}) | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥})) |
| 10 | 9 | iuneq2i 4965 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) |
| 11 | imaiun 7188 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) | |
| 12 | iunid 5013 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 13 | 12 | imaeq2i 6014 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = (𝑅 “ 𝐴) |
| 14 | 10, 11, 13 | 3eqtr2ri 2763 | . 2 ⊢ (𝑅 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 |
| 15 | 5, 7, 14 | 3eqtr4g 2793 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 Vcvv 3437 {csn 4577 ∪ cuni 4860 ∪ ciun 4943 ↾ cres 5623 “ cima 5624 [cec 8629 / cqs 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 |
| This theorem is referenced by: uniqsw 8708 rnresequniqs 38439 cnvepima 38442 |
| Copyright terms: Public domain | W3C validator |