| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniqs | Structured version Visualization version GIF version | ||
| Description: The union of a quotient set, like uniqsw 8751 but with a weaker antecedent: only the restriction of 𝑅 by 𝐴 needs to be a set, not 𝑅 itself, see e.g. cnvepima 38326. (Contributed by NM, 9-Dec-2008.) (Revised by Peter Mazsa, 20-Jun-2019.) |
| Ref | Expression |
|---|---|
| uniqs | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecex 8724 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝑥 ∈ 𝐴 → [𝑥]𝑅 ∈ V)) | |
| 2 | 1 | ralrimiv 3125 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V) |
| 3 | dfiun2g 4997 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) |
| 5 | 4 | eqcomd 2736 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅) |
| 6 | df-qs 8680 | . . 3 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 7 | 6 | unieqi 4886 | . 2 ⊢ ∪ (𝐴 / 𝑅) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 8 | df-ec 8676 | . . . . 5 ⊢ [𝑥]𝑅 = (𝑅 “ {𝑥}) | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥})) |
| 10 | 9 | iuneq2i 4980 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) |
| 11 | imaiun 7222 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) | |
| 12 | iunid 5027 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 13 | 12 | imaeq2i 6032 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = (𝑅 “ 𝐴) |
| 14 | 10, 11, 13 | 3eqtr2ri 2760 | . 2 ⊢ (𝑅 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 |
| 15 | 5, 7, 14 | 3eqtr4g 2790 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3450 {csn 4592 ∪ cuni 4874 ∪ ciun 4958 ↾ cres 5643 “ cima 5644 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 |
| This theorem is referenced by: uniqsw 8751 rnresequniqs 38323 cnvepima 38326 |
| Copyright terms: Public domain | W3C validator |