| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsexg | Structured version Visualization version GIF version | ||
| Description: A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8623 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 2 | abrexexg 7888 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} ∈ V) | |
| 3 | 1, 2 | eqeltrid 2833 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {cab 2708 ∃wrex 3054 Vcvv 3434 [cec 8615 / cqs 8616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-rep 5215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3436 df-qs 8623 |
| This theorem is referenced by: qsex 8692 pstmval 33898 pstmxmet 33900 |
| Copyright terms: Public domain | W3C validator |