![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsexg | Structured version Visualization version GIF version |
Description: A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8706 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
2 | abrexexg 7941 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} ∈ V) | |
3 | 1, 2 | eqeltrid 2829 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2701 ∃wrex 3062 Vcvv 3466 [cec 8698 / cqs 8699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-rep 5276 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-rex 3063 df-v 3468 df-qs 8706 |
This theorem is referenced by: qsex 8767 pstmval 33394 pstmxmet 33396 imaexALTV 37702 |
Copyright terms: Public domain | W3C validator |