| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsexg | Structured version Visualization version GIF version | ||
| Description: A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8677 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 2 | abrexexg 7939 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} ∈ V) | |
| 3 | 1, 2 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 [cec 8669 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-qs 8677 |
| This theorem is referenced by: qsex 8746 pstmval 33885 pstmxmet 33887 |
| Copyright terms: Public domain | W3C validator |