MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsexg Structured version   Visualization version   GIF version

Theorem qsexg 8715
Description: A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsexg (𝐴𝑉 → (𝐴 / 𝑅) ∈ V)

Proof of Theorem qsexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8655 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
2 abrexexg 7894 . 2 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} ∈ V)
31, 2eqeltrid 2842 1 (𝐴𝑉 → (𝐴 / 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cab 2714  wrex 3074  Vcvv 3446  [cec 8647   / cqs 8648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-rep 5243
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-v 3448  df-qs 8655
This theorem is referenced by:  qsex  8716  pstmval  32479  pstmxmet  32481  imaexALTV  36794
  Copyright terms: Public domain W3C validator