![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsexg | Structured version Visualization version GIF version |
Description: A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8750 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
2 | abrexexg 7984 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} ∈ V) | |
3 | 1, 2 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 [cec 8742 / cqs 8743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-rep 5285 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-v 3480 df-qs 8750 |
This theorem is referenced by: qsex 8815 pstmval 33856 pstmxmet 33858 imaexALTV 38312 |
Copyright terms: Public domain | W3C validator |