Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.27z | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
Ref | Expression |
---|---|
r19.27z.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
r19.27z | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.27z.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | r19.3rz 4384 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
4 | 3 | anbi2d 632 | . 2 ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
5 | 1, 4 | bitr4id 293 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 Ⅎwnf 1790 ≠ wne 2935 ∀wral 3054 ∅c0 4212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-ne 2936 df-ral 3059 df-dif 3847 df-nul 4213 |
This theorem is referenced by: r19.27zv 4393 raaan 4408 raaan2 4412 |
Copyright terms: Public domain | W3C validator |