MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27z Structured version   Visualization version   GIF version

Theorem r19.27z 4435
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.27z.1 𝑥𝜓
Assertion
Ref Expression
r19.27z (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem r19.27z
StepHypRef Expression
1 r19.26 3095 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
2 r19.27z.1 . . . 4 𝑥𝜓
32r19.3rz 4427 . . 3 (𝐴 ≠ ∅ → (𝜓 ↔ ∀𝑥𝐴 𝜓))
43anbi2d 629 . 2 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
51, 4bitr4id 290 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnf 1786  wne 2943  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-ne 2944  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by:  r19.27zv  4436  raaan  4451  raaan2  4455
  Copyright terms: Public domain W3C validator