MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27z Structured version   Visualization version   GIF version

Theorem r19.27z 4264
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.27z.1 𝑥𝜓
Assertion
Ref Expression
r19.27z (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem r19.27z
StepHypRef Expression
1 r19.27z.1 . . . 4 𝑥𝜓
21r19.3rz 4256 . . 3 (𝐴 ≠ ∅ → (𝜓 ↔ ∀𝑥𝐴 𝜓))
32anbi2d 623 . 2 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
4 r19.26 3246 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
53, 4syl6rbbr 282 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wnf 1879  wne 2972  wral 3090  c0 4116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-v 3388  df-dif 3773  df-nul 4117
This theorem is referenced by:  r19.27zv  4265  raaan  4274  raaan2  41908
  Copyright terms: Public domain W3C validator