![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.27z | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.) |
Ref | Expression |
---|---|
r19.27z.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
r19.27z | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.27z.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | r19.3rz 4256 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | anbi2d 623 | . 2 ⊢ (𝐴 ≠ ∅ → ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
4 | r19.26 3246 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
5 | 3, 4 | syl6rbbr 282 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 Ⅎwnf 1879 ≠ wne 2972 ∀wral 3090 ∅c0 4116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-v 3388 df-dif 3773 df-nul 4117 |
This theorem is referenced by: r19.27zv 4265 raaan 4274 raaan2 41908 |
Copyright terms: Public domain | W3C validator |