MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rz Structured version   Visualization version   GIF version

Theorem r19.3rz 4427
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.)
Hypothesis
Ref Expression
r19.3rz.1 𝑥𝜑
Assertion
Ref Expression
r19.3rz (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.3rz
StepHypRef Expression
1 n0 4280 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 biimt 361 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
31, 2sylbi 216 . 2 (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
4 df-ral 3069 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
5 r19.3rz.1 . . . 4 𝑥𝜑
6519.23 2204 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ (∃𝑥 𝑥𝐴𝜑))
74, 6bitri 274 . 2 (∀𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴𝜑))
83, 7bitr4di 289 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782  wnf 1786  wcel 2106  wne 2943  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-ne 2944  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by:  r19.28z  4428  r19.3rzv  4429  r19.27z  4435  2reu4lem  4456
  Copyright terms: Public domain W3C validator