Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.3rz | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
Ref | Expression |
---|---|
r19.3rz.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.3rz | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | biimt 360 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) |
4 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | r19.3rz.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | 5 | 19.23 2207 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
8 | 3, 7 | bitr4di 288 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-ral 3068 df-dif 3886 df-nul 4254 |
This theorem is referenced by: r19.28z 4425 r19.3rzv 4426 r19.27z 4432 2reu4lem 4453 |
Copyright terms: Public domain | W3C validator |