![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.3rz | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
Ref | Expression |
---|---|
r19.3rz.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.3rz | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4346 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | biimt 359 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) |
4 | df-ral 3052 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | r19.3rz.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | 5 | 19.23 2200 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
8 | 3, 7 | bitr4di 288 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∃wex 1774 Ⅎwnf 1778 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-ne 2931 df-ral 3052 df-dif 3949 df-nul 4323 |
This theorem is referenced by: r19.28z 4492 r19.3rzv 4493 r19.27z 4499 2reu4lem 4520 |
Copyright terms: Public domain | W3C validator |