| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.3rz | Structured version Visualization version GIF version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
| Ref | Expression |
|---|---|
| r19.3rz.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| r19.3rz | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4333 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | biimt 360 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) |
| 4 | df-ral 3051 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 5 | r19.3rz.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 5 | 19.23 2210 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
| 7 | 4, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
| 8 | 3, 7 | bitr4di 289 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-ne 2932 df-ral 3051 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: r19.28z 4478 r19.3rzv 4479 r19.27z 4485 2reu4lem 4502 |
| Copyright terms: Public domain | W3C validator |