MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rz Structured version   Visualization version   GIF version

Theorem r19.3rz 4462
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.)
Hypothesis
Ref Expression
r19.3rz.1 𝑥𝜑
Assertion
Ref Expression
r19.3rz (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.3rz
StepHypRef Expression
1 n0 4318 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 biimt 360 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
31, 2sylbi 217 . 2 (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
4 df-ral 3046 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
5 r19.3rz.1 . . . 4 𝑥𝜑
6519.23 2212 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ (∃𝑥 𝑥𝐴𝜑))
74, 6bitri 275 . 2 (∀𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴𝜑))
83, 7bitr4di 289 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wex 1779  wnf 1783  wcel 2109  wne 2926  wral 3045  c0 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-ne 2927  df-ral 3046  df-dif 3919  df-nul 4299
This theorem is referenced by:  r19.28z  4463  r19.3rzv  4464  r19.27z  4470  2reu4lem  4487
  Copyright terms: Public domain W3C validator