![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raaan | Structured version Visualization version GIF version |
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
Ref | Expression |
---|---|
raaan.1 | ⊢ Ⅎ𝑦𝜑 |
raaan.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
raaan | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal 4501 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
2 | rzal 4501 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
3 | rzal 4501 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝜓) | |
4 | pm5.1 821 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | |
5 | 1, 2, 3, 4 | syl12anc 834 | . 2 ⊢ (𝐴 = ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
6 | raaan.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
7 | 6 | r19.28z 4490 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
8 | 7 | ralbidv 3169 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
9 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
10 | raaan.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
11 | 9, 10 | nfralw 3300 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓 |
12 | 11 | r19.27z 4497 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
13 | 8, 12 | bitrd 279 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
14 | 5, 13 | pm2.61ine 3017 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ≠ wne 2932 ∀wral 3053 ∅c0 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-dif 3944 df-nul 4316 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |