|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > raaan | Structured version Visualization version GIF version | ||
| Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) | 
| Ref | Expression | 
|---|---|
| raaan.1 | ⊢ Ⅎ𝑦𝜑 | 
| raaan.2 | ⊢ Ⅎ𝑥𝜓 | 
| Ref | Expression | 
|---|---|
| raaan | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rzal 4509 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 2 | rzal 4509 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rzal 4509 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝜓) | |
| 4 | pm5.1 824 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | |
| 5 | 1, 2, 3, 4 | syl12anc 837 | . 2 ⊢ (𝐴 = ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | 
| 6 | raaan.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 7 | 6 | r19.28z 4498 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | 
| 8 | 7 | ralbidv 3178 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | 
| 9 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 10 | raaan.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 11 | 9, 10 | nfralw 3311 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓 | 
| 12 | 11 | r19.27z 4505 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | 
| 13 | 8, 12 | bitrd 279 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | 
| 14 | 5, 13 | pm2.61ine 3025 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ≠ wne 2940 ∀wral 3061 ∅c0 4333 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-dif 3954 df-nul 4334 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |