MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaan Structured version   Visualization version   GIF version

Theorem raaan 4448
Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.)
Hypotheses
Ref Expression
raaan.1 𝑦𝜑
raaan.2 𝑥𝜓
Assertion
Ref Expression
raaan (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaan
StepHypRef Expression
1 rzal 4436 . . 3 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐴 (𝜑𝜓))
2 rzal 4436 . . 3 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
3 rzal 4436 . . 3 (𝐴 = ∅ → ∀𝑦𝐴 𝜓)
4 pm5.1 820 . . 3 ((∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ∧ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)) → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
51, 2, 3, 4syl12anc 833 . 2 (𝐴 = ∅ → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
6 raaan.1 . . . . 5 𝑦𝜑
76r19.28z 4425 . . . 4 (𝐴 ≠ ∅ → (∀𝑦𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐴 𝜓)))
87ralbidv 3120 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
9 nfcv 2906 . . . . 5 𝑥𝐴
10 raaan.2 . . . . 5 𝑥𝜓
119, 10nfralw 3149 . . . 4 𝑥𝑦𝐴 𝜓
1211r19.27z 4432 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
138, 12bitrd 278 . 2 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
145, 13pm2.61ine 3027 1 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wnf 1787  wne 2942  wral 3063  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator