| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raaan | Structured version Visualization version GIF version | ||
| Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) |
| Ref | Expression |
|---|---|
| raaan.1 | ⊢ Ⅎ𝑦𝜑 |
| raaan.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| raaan | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rzal 4456 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 2 | rzal 4456 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | rzal 4456 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝜓) | |
| 4 | pm5.1 823 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | |
| 5 | 1, 2, 3, 4 | syl12anc 836 | . 2 ⊢ (𝐴 = ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 6 | raaan.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 7 | 6 | r19.28z 4445 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 8 | 7 | ralbidv 3155 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 9 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 10 | raaan.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 11 | 9, 10 | nfralw 3279 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓 |
| 12 | 11 | r19.27z 4452 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 13 | 8, 12 | bitrd 279 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 14 | 5, 13 | pm2.61ine 3011 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ≠ wne 2928 ∀wral 3047 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |