MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28v Structured version   Visualization version   GIF version

Theorem r19.28v 3110
Description: Restricted quantifier version of one direction of 19.28 2224. (Assuming 𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.28zv 4428.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
Assertion
Ref Expression
r19.28v ((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.28v
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
21ralrimivw 3108 . . 3 (𝜑 → ∀𝑥𝐴 𝜑)
32anim1i 614 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
4 r19.26 3094 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
53, 4sylibr 233 1 ((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ral 3068
This theorem is referenced by:  rr19.28v  3592  fununi  6493  txlm  22707  2reu8i  44492  2reuimp0  44493
  Copyright terms: Public domain W3C validator