| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.28v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of one direction of 19.28 2229. (Assuming Ⅎ𝑥𝐴, the other direction holds when 𝐴 is nonempty, see r19.28zv 4481.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.) |
| Ref | Expression |
|---|---|
| r19.28v | ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ralrimivw 3137 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| 3 | 2 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | r19.26 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3053 |
| This theorem is referenced by: rr19.28v 3652 fununi 6616 txlm 23591 2reu8i 47109 2reuimp0 47110 |
| Copyright terms: Public domain | W3C validator |