![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.28zv | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
r19.28zv | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1910 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.28z 4498 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ≠ wne 2937 ∀wral 3058 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-ne 2938 df-ral 3059 df-dif 3950 df-nul 4324 |
This theorem is referenced by: raaanv 4522 raltpd 4786 iinrab 5072 iindif2 5080 iinin2 5081 reusv2lem5 5402 xpiindi 5838 dfpo2 6300 fint 6776 ixpiin 8943 neips 23030 txflf 23923 isclmp 25037 diaglbN 40528 dihglbcpreN 40773 2reuimp 46495 |
Copyright terms: Public domain | W3C validator |