MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28zv Structured version   Visualization version   GIF version

Theorem r19.28zv 4524
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
r19.28zv (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.28zv
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
21r19.28z 4521 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wne 2946  wral 3067  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-ne 2947  df-ral 3068  df-dif 3979  df-nul 4353
This theorem is referenced by:  raaanv  4541  raltpd  4806  iinrab  5092  iindif2  5100  iinin2  5101  reusv2lem5  5420  xpiindi  5860  dfpo2  6327  fint  6800  ixpiin  8982  neips  23142  txflf  24035  isclmp  25149  diaglbN  41012  dihglbcpreN  41257  2reuimp  47030
  Copyright terms: Public domain W3C validator