MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28zv Structured version   Visualization version   GIF version

Theorem r19.28zv 4464
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
r19.28zv (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.28zv
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
21r19.28z 4461 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wne 2925  wral 3044  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-ne 2926  df-ral 3045  df-dif 3917  df-nul 4297
This theorem is referenced by:  raaanv  4481  raltpd  4745  iinrab  5033  iindif2  5041  iinin2  5042  reusv2lem5  5357  xpiindi  5799  dfpo2  6269  fint  6739  ixpiin  8897  neips  23000  txflf  23893  isclmp  24997  diaglbN  41049  dihglbcpreN  41294  2reuimp  47116
  Copyright terms: Public domain W3C validator