| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.28zv | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
| Ref | Expression |
|---|---|
| r19.28zv | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | r19.28z 4473 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ≠ wne 2932 ∀wral 3051 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-ne 2933 df-ral 3052 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: raaanv 4493 raltpd 4757 iinrab 5045 iindif2 5053 iinin2 5054 reusv2lem5 5372 xpiindi 5815 dfpo2 6285 fint 6757 ixpiin 8938 neips 23051 txflf 23944 isclmp 25048 diaglbN 41074 dihglbcpreN 41319 2reuimp 47144 |
| Copyright terms: Public domain | W3C validator |