Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.28zv | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
r19.28zv | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1921 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.28z 4434 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ≠ wne 2945 ∀wral 3066 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-ne 2946 df-ral 3071 df-dif 3895 df-nul 4263 |
This theorem is referenced by: raaanv 4458 raltpd 4723 iinrab 5003 iindif2 5011 iinin2 5012 reusv2lem5 5329 xpiindi 5743 dfpo2 6198 fint 6651 ixpiin 8695 neips 22262 txflf 23155 isclmp 24258 diaglbN 39065 dihglbcpreN 39310 2reuimp 44575 |
Copyright terms: Public domain | W3C validator |