Proof of Theorem 2reuimp0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2reuimp.c | . . . 4
⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) | 
| 2 | 1 | reu8 3738 | . . 3
⊢
(∃!𝑏 ∈
𝑉 𝜑 ↔ ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐))) | 
| 3 | 2 | reubii 3388 | . 2
⊢
(∃!𝑎 ∈
𝑉 ∃!𝑏 ∈ 𝑉 𝜑 ↔ ∃!𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐))) | 
| 4 |  | 2reuimp.d | . . . . . 6
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) | 
| 5 |  | 2reuimp.a | . . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) | 
| 6 | 5 | imbi1d 341 | . . . . . . 7
⊢ (𝑎 = 𝑑 → ((𝜃 → 𝑏 = 𝑐) ↔ (𝜏 → 𝑏 = 𝑐))) | 
| 7 | 6 | ralbidv 3177 | . . . . . 6
⊢ (𝑎 = 𝑑 → (∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐))) | 
| 8 | 4, 7 | anbi12d 632 | . . . . 5
⊢ (𝑎 = 𝑑 → ((𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)))) | 
| 9 | 8 | rexbidv 3178 | . . . 4
⊢ (𝑎 = 𝑑 → (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ ∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)))) | 
| 10 | 9 | reu8 3738 | . . 3
⊢
(∃!𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ ∃𝑎 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) | 
| 11 |  | r19.28v 3189 | . . . . 5
⊢
((∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) | 
| 12 |  | 2reuimp.e | . . . . . . . . . 10
⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) | 
| 13 |  | equequ1 2023 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑒 → (𝑏 = 𝑐 ↔ 𝑒 = 𝑐)) | 
| 14 | 13 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑒 → ((𝜃 → 𝑏 = 𝑐) ↔ (𝜃 → 𝑒 = 𝑐))) | 
| 15 | 14 | ralbidv 3177 | . . . . . . . . . 10
⊢ (𝑏 = 𝑒 → (∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) | 
| 16 | 12, 15 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑏 = 𝑒 → ((𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) | 
| 17 | 16 | cbvrexvw 3237 | . . . . . . . 8
⊢
(∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ ∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) | 
| 18 |  | r19.23v 3182 | . . . . . . . . 9
⊢
(∀𝑏 ∈
𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ↔ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) | 
| 19 |  | r19.28v 3189 | . . . . . . . . . . 11
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ∀𝑏 ∈ 𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 (∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) | 
| 20 |  | ancom 460 | . . . . . . . . . . . . . 14
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ↔ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ ∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) | 
| 21 |  | r19.42v 3190 | . . . . . . . . . . . . . 14
⊢
(∃𝑒 ∈
𝑉 (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) ↔ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ ∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) | 
| 22 | 20, 21 | bitr4i 278 | . . . . . . . . . . . . 13
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ↔ ∃𝑒 ∈ 𝑉 (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) | 
| 23 |  | 2reuimp.f | . . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) | 
| 24 |  | equequ2 2024 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑓 → (𝑒 = 𝑐 ↔ 𝑒 = 𝑓)) | 
| 25 | 23, 24 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑓 → ((𝜃 → 𝑒 = 𝑐) ↔ (𝜓 → 𝑒 = 𝑓))) | 
| 26 | 25 | cbvralvw 3236 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑐 ∈
𝑉 (𝜃 → 𝑒 = 𝑐) ↔ ∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓)) | 
| 27 |  | r19.28v 3189 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ ∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓)) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 28 | 27 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → (∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) | 
| 29 | 28 | expcom 413 | . . . . . . . . . . . . . . . 16
⊢ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → (∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))))) | 
| 30 | 26, 29 | syl7bi 255 | . . . . . . . . . . . . . . 15
⊢ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → (∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))))) | 
| 31 | 30 | imp32 418 | . . . . . . . . . . . . . 14
⊢ ((((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 32 | 31 | reximi 3083 | . . . . . . . . . . . . 13
⊢
(∃𝑒 ∈
𝑉 (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) → ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 33 | 22, 32 | sylbi 217 | . . . . . . . . . . . 12
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 34 | 33 | ralimi 3082 | . . . . . . . . . . 11
⊢
(∀𝑏 ∈
𝑉 (∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 35 | 19, 34 | syl 17 | . . . . . . . . . 10
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ∀𝑏 ∈ 𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 36 | 35 | ex 412 | . . . . . . . . 9
⊢
(∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) → (∀𝑏 ∈ 𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) | 
| 37 | 18, 36 | biimtrrid 243 | . . . . . . . 8
⊢
(∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) → ((∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) | 
| 38 | 17, 37 | sylbi 217 | . . . . . . 7
⊢
(∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) → ((∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) | 
| 39 | 38 | imp 406 | . . . . . 6
⊢
((∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 40 | 39 | ralimi 3082 | . . . . 5
⊢
(∀𝑑 ∈
𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 41 | 11, 40 | syl 17 | . . . 4
⊢
((∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 42 | 41 | reximi 3083 | . . 3
⊢
(∃𝑎 ∈
𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 43 | 10, 42 | sylbi 217 | . 2
⊢
(∃!𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | 
| 44 | 3, 43 | sylbi 217 | 1
⊢
(∃!𝑎 ∈
𝑉 ∃!𝑏 ∈ 𝑉 𝜑 → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |