Proof of Theorem 2reuimp0
Step | Hyp | Ref
| Expression |
1 | | 2reuimp.c |
. . . 4
⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) |
2 | 1 | reu8 3668 |
. . 3
⊢
(∃!𝑏 ∈
𝑉 𝜑 ↔ ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐))) |
3 | 2 | reubii 3325 |
. 2
⊢
(∃!𝑎 ∈
𝑉 ∃!𝑏 ∈ 𝑉 𝜑 ↔ ∃!𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐))) |
4 | | 2reuimp.d |
. . . . . 6
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) |
5 | | 2reuimp.a |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) |
6 | 5 | imbi1d 342 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → ((𝜃 → 𝑏 = 𝑐) ↔ (𝜏 → 𝑏 = 𝑐))) |
7 | 6 | ralbidv 3112 |
. . . . . 6
⊢ (𝑎 = 𝑑 → (∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐))) |
8 | 4, 7 | anbi12d 631 |
. . . . 5
⊢ (𝑎 = 𝑑 → ((𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)))) |
9 | 8 | rexbidv 3226 |
. . . 4
⊢ (𝑎 = 𝑑 → (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ ∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)))) |
10 | 9 | reu8 3668 |
. . 3
⊢
(∃!𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ ∃𝑎 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) |
11 | | r19.28v 3116 |
. . . . 5
⊢
((∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) |
12 | | 2reuimp.e |
. . . . . . . . . 10
⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) |
13 | | equequ1 2028 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑒 → (𝑏 = 𝑐 ↔ 𝑒 = 𝑐)) |
14 | 13 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑒 → ((𝜃 → 𝑏 = 𝑐) ↔ (𝜃 → 𝑒 = 𝑐))) |
15 | 14 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑒 → (∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) |
16 | 12, 15 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑏 = 𝑒 → ((𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) |
17 | 16 | cbvrexvw 3384 |
. . . . . . . 8
⊢
(∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ↔ ∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) |
18 | | r19.23v 3208 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ↔ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) |
19 | | r19.28v 3116 |
. . . . . . . . . . 11
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ∀𝑏 ∈ 𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 (∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) |
20 | | ancom 461 |
. . . . . . . . . . . . . 14
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ↔ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ ∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) |
21 | | r19.42v 3279 |
. . . . . . . . . . . . . 14
⊢
(∃𝑒 ∈
𝑉 (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) ↔ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ ∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) |
22 | 20, 21 | bitr4i 277 |
. . . . . . . . . . . . 13
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ↔ ∃𝑒 ∈ 𝑉 (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)))) |
23 | | 2reuimp.f |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) |
24 | | equequ2 2029 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = 𝑓 → (𝑒 = 𝑐 ↔ 𝑒 = 𝑓)) |
25 | 23, 24 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑓 → ((𝜃 → 𝑒 = 𝑐) ↔ (𝜓 → 𝑒 = 𝑓))) |
26 | 25 | cbvralvw 3383 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑐 ∈
𝑉 (𝜃 → 𝑒 = 𝑐) ↔ ∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓)) |
27 | | r19.28v 3116 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ ∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓)) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
28 | 27 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → (∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) |
29 | 28 | expcom 414 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → (∀𝑓 ∈ 𝑉 (𝜓 → 𝑒 = 𝑓) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))))) |
30 | 26, 29 | syl7bi 254 |
. . . . . . . . . . . . . . 15
⊢ (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → (∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))))) |
31 | 30 | imp32 419 |
. . . . . . . . . . . . . 14
⊢ ((((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) → ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
32 | 31 | reximi 3178 |
. . . . . . . . . . . . 13
⊢
(∃𝑒 ∈
𝑉 (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ∧ (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐))) → ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
33 | 22, 32 | sylbi 216 |
. . . . . . . . . . . 12
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
34 | 33 | ralimi 3087 |
. . . . . . . . . . 11
⊢
(∀𝑏 ∈
𝑉 (∃𝑒 ∈ 𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
35 | 19, 34 | syl 17 |
. . . . . . . . . 10
⊢
((∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) ∧ ∀𝑏 ∈ 𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
36 | 35 | ex 413 |
. . . . . . . . 9
⊢
(∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) → (∀𝑏 ∈ 𝑉 ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) |
37 | 18, 36 | syl5bir 242 |
. . . . . . . 8
⊢
(∃𝑒 ∈
𝑉 (𝜂 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑒 = 𝑐)) → ((∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) |
38 | 17, 37 | sylbi 216 |
. . . . . . 7
⊢
(∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) → ((∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)))) |
39 | 38 | imp 407 |
. . . . . 6
⊢
((∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
40 | 39 | ralimi 3087 |
. . . . 5
⊢
(∀𝑑 ∈
𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
41 | 11, 40 | syl 17 |
. . . 4
⊢
((∃𝑏 ∈
𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
42 | 41 | reximi 3178 |
. . 3
⊢
(∃𝑎 ∈
𝑉 (∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) ∧ ∀𝑑 ∈ 𝑉 (∃𝑏 ∈ 𝑉 (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
43 | 10, 42 | sylbi 216 |
. 2
⊢
(∃!𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝜑 ∧ ∀𝑐 ∈ 𝑉 (𝜃 → 𝑏 = 𝑐)) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
44 | 3, 43 | sylbi 216 |
1
⊢
(∃!𝑎 ∈
𝑉 ∃!𝑏 ∈ 𝑉 𝜑 → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |