| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rr19.28v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 4500 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.) |
| Ref | Expression |
|---|---|
| rr19.28v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | ralimi 3082 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜑) |
| 3 | biidd 262 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
| 4 | 3 | rspcv 3617 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝜑 → 𝜑)) |
| 5 | 2, 4 | syl5 34 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → 𝜑)) |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 7 | 6 | ralimi 3082 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜓) |
| 8 | 5, 7 | jca2 513 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 9 | 8 | ralimia 3079 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| 10 | r19.28v 3189 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) → ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 11 | 10 | ralimi 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| 12 | 9, 11 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |