Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rr19.28v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 4431 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.) |
Ref | Expression |
---|---|
rr19.28v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 3087 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜑) |
3 | biidd 261 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
4 | 3 | rspcv 3557 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝜑 → 𝜑)) |
5 | 2, 4 | syl5 34 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → 𝜑)) |
6 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
7 | 6 | ralimi 3087 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑦 ∈ 𝐴 𝜓) |
8 | 5, 7 | jca2 514 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
9 | 8 | ralimia 3085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
10 | r19.28v 3116 | . . 3 ⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) → ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
11 | 10 | ralimi 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
12 | 9, 11 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |