|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > r19.37v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of one direction of 19.37v 1990. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4501.) (Contributed by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023.) | 
| Ref | Expression | 
|---|---|
| r19.37v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ralrimivw 3149 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) | 
| 3 | r19.35 3107 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 4 | 3 | biimpi 216 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| 5 | 2, 4 | syl5 34 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: ssiun 5045 isucn2 24289 | 
| Copyright terms: Public domain | W3C validator |