MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.37v Structured version   Visualization version   GIF version

Theorem r19.37v 3274
Description: Restricted quantifier version of one direction of 19.37v 1995. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4432.) (Contributed by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023.)
Assertion
Ref Expression
r19.37v (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.37v
StepHypRef Expression
1 id 22 . . 3 (𝜑𝜑)
21ralrimivw 3104 . 2 (𝜑 → ∀𝑥𝐴 𝜑)
3 r19.35 3271 . . 3 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
43biimpi 215 . 2 (∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
52, 4syl5 34 1 (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by:  ssiun  4976  isucn2  23431
  Copyright terms: Public domain W3C validator