Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.37v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of one direction of 19.37v 1995. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4432.) (Contributed by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023.) |
Ref | Expression |
---|---|
r19.37v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ralrimivw 3104 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
3 | r19.35 3271 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
4 | 3 | biimpi 215 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
5 | 2, 4 | syl5 34 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: ssiun 4976 isucn2 23431 |
Copyright terms: Public domain | W3C validator |