MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isucn2 Structured version   Visualization version   GIF version

Theorem isucn2 23431
Description: The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉", expressed with filter bases for the entourages. (Contributed by Thierry Arnoux, 26-Jan-2018.)
Hypotheses
Ref Expression
isucn2.u 𝑈 = ((𝑋 × 𝑋)filGen𝑅)
isucn2.v 𝑉 = ((𝑌 × 𝑌)filGen𝑆)
isucn2.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
isucn2.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
isucn2.3 (𝜑𝑅 ∈ (fBas‘(𝑋 × 𝑋)))
isucn2.4 (𝜑𝑆 ∈ (fBas‘(𝑌 × 𝑌)))
Assertion
Ref Expression
isucn2 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝑦,𝐹   𝑅,𝑟,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑈,𝑟,𝑠,𝑥,𝑦   𝑉,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥,𝑦   𝑌,𝑠,𝑥,𝑦   𝜑,𝑟,𝑠,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑠)   𝑆(𝑟)   𝑉(𝑦,𝑟)   𝑌(𝑟)

Proof of Theorem isucn2
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isucn2.1 . . 3 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 isucn2.2 . . 3 (𝜑𝑉 ∈ (UnifOn‘𝑌))
3 isucn 23430 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
5 breq 5076 . . . . . . . . . 10 (𝑣 = 𝑠 → ((𝐹𝑥)𝑣(𝐹𝑦) ↔ (𝐹𝑥)𝑠(𝐹𝑦)))
65imbi2d 341 . . . . . . . . 9 (𝑣 = 𝑠 → ((𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
76ralbidv 3112 . . . . . . . 8 (𝑣 = 𝑠 → (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
87rexralbidv 3230 . . . . . . 7 (𝑣 = 𝑠 → (∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
9 simplr 766 . . . . . . 7 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ∧ 𝑠𝑆) → ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))
10 isucn2.4 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (fBas‘(𝑌 × 𝑌)))
11 ssfg 23023 . . . . . . . . . . . 12 (𝑆 ∈ (fBas‘(𝑌 × 𝑌)) → 𝑆 ⊆ ((𝑌 × 𝑌)filGen𝑆))
1210, 11syl 17 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ((𝑌 × 𝑌)filGen𝑆))
13 isucn2.v . . . . . . . . . . 11 𝑉 = ((𝑌 × 𝑌)filGen𝑆)
1412, 13sseqtrrdi 3972 . . . . . . . . . 10 (𝜑𝑆𝑉)
1514adantr 481 . . . . . . . . 9 ((𝜑𝐹:𝑋𝑌) → 𝑆𝑉)
1615adantr 481 . . . . . . . 8 (((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) → 𝑆𝑉)
1716sselda 3921 . . . . . . 7 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ∧ 𝑠𝑆) → 𝑠𝑉)
188, 9, 17rspcdva 3562 . . . . . 6 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ∧ 𝑠𝑆) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
19 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑢𝑈) → 𝑢𝑈)
20 isucn2.u . . . . . . . . . . . 12 𝑈 = ((𝑋 × 𝑋)filGen𝑅)
2119, 20eleqtrdi 2849 . . . . . . . . . . 11 ((𝜑𝑢𝑈) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅))
22 isucn2.3 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ (fBas‘(𝑋 × 𝑋)))
23 elfg 23022 . . . . . . . . . . . . 13 (𝑅 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅) ↔ (𝑢 ⊆ (𝑋 × 𝑋) ∧ ∃𝑟𝑅 𝑟𝑢)))
2422, 23syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅) ↔ (𝑢 ⊆ (𝑋 × 𝑋) ∧ ∃𝑟𝑅 𝑟𝑢)))
2524simplbda 500 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅)) → ∃𝑟𝑅 𝑟𝑢)
2621, 25syldan 591 . . . . . . . . . 10 ((𝜑𝑢𝑈) → ∃𝑟𝑅 𝑟𝑢)
27 ssbr 5118 . . . . . . . . . . . . . . . . . 18 (𝑟𝑢 → (𝑥𝑟𝑦𝑥𝑢𝑦))
2827imim1d 82 . . . . . . . . . . . . . . . . 17 (𝑟𝑢 → ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
2928adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑟𝑅) ∧ 𝑟𝑢) → ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
3029ralrimivw 3104 . . . . . . . . . . . . . . 15 (((𝜑𝑟𝑅) ∧ 𝑟𝑢) → ∀𝑦𝑋 ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
3130ralrimivw 3104 . . . . . . . . . . . . . 14 (((𝜑𝑟𝑅) ∧ 𝑟𝑢) → ∀𝑥𝑋𝑦𝑋 ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
32 ralim 3083 . . . . . . . . . . . . . . 15 (∀𝑦𝑋 ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) → (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
3332ralimi 3087 . . . . . . . . . . . . . 14 (∀𝑥𝑋𝑦𝑋 ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) → ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
34 ralim 3083 . . . . . . . . . . . . . 14 (∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
3531, 33, 343syl 18 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ 𝑟𝑢) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
3635ex 413 . . . . . . . . . . . 12 ((𝜑𝑟𝑅) → (𝑟𝑢 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
3736reximdva 3203 . . . . . . . . . . 11 (𝜑 → (∃𝑟𝑅 𝑟𝑢 → ∃𝑟𝑅 (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
3837adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (∃𝑟𝑅 𝑟𝑢 → ∃𝑟𝑅 (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
3926, 38mpd 15 . . . . . . . . 9 ((𝜑𝑢𝑈) → ∃𝑟𝑅 (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
40 r19.37v 3274 . . . . . . . . 9 (∃𝑟𝑅 (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
4139, 40syl 17 . . . . . . . 8 ((𝜑𝑢𝑈) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
4241rexlimdva 3213 . . . . . . 7 (𝜑 → (∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
4342ad3antrrr 727 . . . . . 6 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ∧ 𝑠𝑆) → (∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
4418, 43mpd 15 . . . . 5 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ∧ 𝑠𝑆) → ∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
4544ralrimiva 3103 . . . 4 (((𝜑𝐹:𝑋𝑌) ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) → ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
46 ssfg 23023 . . . . . . . . . . 11 (𝑅 ∈ (fBas‘(𝑋 × 𝑋)) → 𝑅 ⊆ ((𝑋 × 𝑋)filGen𝑅))
4722, 46syl 17 . . . . . . . . . 10 (𝜑𝑅 ⊆ ((𝑋 × 𝑋)filGen𝑅))
4847, 20sseqtrrdi 3972 . . . . . . . . 9 (𝜑𝑅𝑈)
49 ssrexv 3988 . . . . . . . . . 10 (𝑅𝑈 → (∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
50 breq 5076 . . . . . . . . . . . . 13 (𝑟 = 𝑢 → (𝑥𝑟𝑦𝑥𝑢𝑦))
5150imbi1d 342 . . . . . . . . . . . 12 (𝑟 = 𝑢 → ((𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
52512ralbidv 3129 . . . . . . . . . . 11 (𝑟 = 𝑢 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
5352cbvrexvw 3384 . . . . . . . . . 10 (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) ↔ ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
5449, 53syl6ib 250 . . . . . . . . 9 (𝑅𝑈 → (∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
5548, 54syl 17 . . . . . . . 8 (𝜑 → (∃𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
5655ralimdv 3109 . . . . . . 7 (𝜑 → (∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
5756adantr 481 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
58 nfv 1917 . . . . . . . . . . 11 𝑠(𝜑𝐹:𝑋𝑌)
59 nfra1 3144 . . . . . . . . . . 11 𝑠𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))
6058, 59nfan 1902 . . . . . . . . . 10 𝑠((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
61 nfv 1917 . . . . . . . . . 10 𝑠 𝑣𝑉
6260, 61nfan 1902 . . . . . . . . 9 𝑠(((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉)
63 rspa 3132 . . . . . . . . . . 11 ((∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) ∧ 𝑠𝑆) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
6463ad5ant24 758 . . . . . . . . . 10 ((((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))
65 simp-4l 780 . . . . . . . . . . 11 ((((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → (𝜑𝐹:𝑋𝑌))
66 simplr 766 . . . . . . . . . . 11 ((((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → 𝑠𝑆)
67 simpr 485 . . . . . . . . . . 11 ((((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → 𝑠𝑣)
68 ssbr 5118 . . . . . . . . . . . . . . . 16 (𝑠𝑣 → ((𝐹𝑥)𝑠(𝐹𝑦) → (𝐹𝑥)𝑣(𝐹𝑦)))
6968adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → ((𝐹𝑥)𝑠(𝐹𝑦) → (𝐹𝑥)𝑣(𝐹𝑦)))
7069imim2d 57 . . . . . . . . . . . . . 14 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → ((𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
7170ralimdv 3109 . . . . . . . . . . . . 13 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
7271ralimdv 3109 . . . . . . . . . . . 12 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
7372reximdv 3202 . . . . . . . . . . 11 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → (∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
7465, 66, 67, 73syl21anc 835 . . . . . . . . . 10 ((((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → (∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
7564, 74mpd 15 . . . . . . . . 9 ((((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) ∧ 𝑠𝑆) ∧ 𝑠𝑣) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))
7610ad3antrrr 727 . . . . . . . . . 10 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) → 𝑆 ∈ (fBas‘(𝑌 × 𝑌)))
77 simpr 485 . . . . . . . . . . 11 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) → 𝑣𝑉)
7877, 13eleqtrdi 2849 . . . . . . . . . 10 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) → 𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆))
79 elfg 23022 . . . . . . . . . . 11 (𝑆 ∈ (fBas‘(𝑌 × 𝑌)) → (𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆) ↔ (𝑣 ⊆ (𝑌 × 𝑌) ∧ ∃𝑠𝑆 𝑠𝑣)))
8079simplbda 500 . . . . . . . . . 10 ((𝑆 ∈ (fBas‘(𝑌 × 𝑌)) ∧ 𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆)) → ∃𝑠𝑆 𝑠𝑣)
8176, 78, 80syl2anc 584 . . . . . . . . 9 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) → ∃𝑠𝑆 𝑠𝑣)
8262, 75, 81r19.29af 3262 . . . . . . . 8 ((((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) ∧ 𝑣𝑉) → ∃𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))
8382ralrimiva 3103 . . . . . . 7 (((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) → ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))
8483ex 413 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑠𝑆𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
8557, 84syld 47 . . . . 5 ((𝜑𝐹:𝑋𝑌) → (∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)) → ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))))
8685imp 407 . . . 4 (((𝜑𝐹:𝑋𝑌) ∧ ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))) → ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))
8745, 86impbida 798 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦))))
8887pm5.32da 579 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑢𝑈𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
894, 88bitrd 278 1 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑠𝑆𝑟𝑅𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑠(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  fBascfbas 20585  filGencfg 20586  UnifOncust 23351   Cnucucn 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-fbas 20594  df-fg 20595  df-ust 23352  df-ucn 23428
This theorem is referenced by:  metucn  23727
  Copyright terms: Public domain W3C validator