| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isucn2.1 | . . 3
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) | 
| 2 |  | isucn2.2 | . . 3
⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) | 
| 3 |  | isucn 24288 | . . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))))) | 
| 4 | 1, 2, 3 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))))) | 
| 5 |  | breq 5144 | . . . . . . . . . 10
⊢ (𝑣 = 𝑠 → ((𝐹‘𝑥)𝑣(𝐹‘𝑦) ↔ (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 6 | 5 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑣 = 𝑠 → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 7 | 6 | ralbidv 3177 | . . . . . . . 8
⊢ (𝑣 = 𝑠 → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 8 | 7 | rexralbidv 3222 | . . . . . . 7
⊢ (𝑣 = 𝑠 → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 9 |  | simplr 768 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 10 |  | isucn2.4 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ (fBas‘(𝑌 × 𝑌))) | 
| 11 |  | ssfg 23881 | . . . . . . . . . . . 12
⊢ (𝑆 ∈ (fBas‘(𝑌 × 𝑌)) → 𝑆 ⊆ ((𝑌 × 𝑌)filGen𝑆)) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ⊆ ((𝑌 × 𝑌)filGen𝑆)) | 
| 13 |  | isucn2.v | . . . . . . . . . . 11
⊢ 𝑉 = ((𝑌 × 𝑌)filGen𝑆) | 
| 14 | 12, 13 | sseqtrrdi 4024 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ 𝑉) | 
| 15 | 14 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → 𝑆 ⊆ 𝑉) | 
| 16 | 15 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) → 𝑆 ⊆ 𝑉) | 
| 17 | 16 | sselda 3982 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ 𝑉) | 
| 18 | 8, 9, 17 | rspcdva 3622 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 19 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) | 
| 20 |  | isucn2.u | . . . . . . . . . . . 12
⊢ 𝑈 = ((𝑋 × 𝑋)filGen𝑅) | 
| 21 | 19, 20 | eleqtrdi 2850 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅)) | 
| 22 |  | isucn2.3 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ (fBas‘(𝑋 × 𝑋))) | 
| 23 |  | elfg 23880 | . . . . . . . . . . . . 13
⊢ (𝑅 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅) ↔ (𝑢 ⊆ (𝑋 × 𝑋) ∧ ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢))) | 
| 24 | 22, 23 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅) ↔ (𝑢 ⊆ (𝑋 × 𝑋) ∧ ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢))) | 
| 25 | 24 | simplbda 499 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ((𝑋 × 𝑋)filGen𝑅)) → ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢) | 
| 26 | 21, 25 | syldan 591 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢) | 
| 27 |  | ssbr 5186 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ⊆ 𝑢 → (𝑥𝑟𝑦 → 𝑥𝑢𝑦)) | 
| 28 | 27 | imim1d 82 | . . . . . . . . . . . . . . . . 17
⊢ (𝑟 ⊆ 𝑢 → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 29 | 28 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 30 | 29 | ralrimivw 3149 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → ∀𝑦 ∈ 𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 31 | 30 | ralrimivw 3149 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 32 |  | ralim 3085 | . . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 33 | 32 | ralimi 3082 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → ∀𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 34 |  | ralim 3085 | . . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 35 | 31, 33, 34 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ 𝑟 ⊆ 𝑢) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 36 | 35 | ex 412 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝑟 ⊆ 𝑢 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | 
| 37 | 36 | reximdva 3167 | . . . . . . . . . . 11
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃𝑟 ∈ 𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | 
| 38 | 37 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∃𝑟 ∈ 𝑅 𝑟 ⊆ 𝑢 → ∃𝑟 ∈ 𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | 
| 39 | 26, 38 | mpd 15 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑟 ∈ 𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 40 |  | r19.37v 3181 | . . . . . . . . 9
⊢
(∃𝑟 ∈
𝑅 (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 41 | 39, 40 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 42 | 41 | rexlimdva 3154 | . . . . . . 7
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 43 | 42 | ad3antrrr 730 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 44 | 18, 43 | mpd 15 | . . . . 5
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ∧ 𝑠 ∈ 𝑆) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 45 | 44 | ralrimiva 3145 | . . . 4
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) → ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 46 |  | ssfg 23881 | . . . . . . . . . . 11
⊢ (𝑅 ∈ (fBas‘(𝑋 × 𝑋)) → 𝑅 ⊆ ((𝑋 × 𝑋)filGen𝑅)) | 
| 47 | 22, 46 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑅 ⊆ ((𝑋 × 𝑋)filGen𝑅)) | 
| 48 | 47, 20 | sseqtrrdi 4024 | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ⊆ 𝑈) | 
| 49 |  | ssrexv 4052 | . . . . . . . . . 10
⊢ (𝑅 ⊆ 𝑈 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 50 |  | breq 5144 | . . . . . . . . . . . . 13
⊢ (𝑟 = 𝑢 → (𝑥𝑟𝑦 ↔ 𝑥𝑢𝑦)) | 
| 51 | 50 | imbi1d 341 | . . . . . . . . . . . 12
⊢ (𝑟 = 𝑢 → ((𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 52 | 51 | 2ralbidv 3220 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑢 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 53 | 52 | cbvrexvw 3237 | . . . . . . . . . 10
⊢
(∃𝑟 ∈
𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ↔ ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 54 | 49, 53 | imbitrdi 251 | . . . . . . . . 9
⊢ (𝑅 ⊆ 𝑈 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 55 | 48, 54 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 56 | 55 | ralimdv 3168 | . . . . . . 7
⊢ (𝜑 → (∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 57 | 56 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 58 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑠(𝜑 ∧ 𝐹:𝑋⟶𝑌) | 
| 59 |  | nfra1 3283 | . . . . . . . . . . 11
⊢
Ⅎ𝑠∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) | 
| 60 | 58, 59 | nfan 1898 | . . . . . . . . . 10
⊢
Ⅎ𝑠((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 61 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑠 𝑣 ∈ 𝑉 | 
| 62 | 60, 61 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎ𝑠(((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) | 
| 63 |  | rspa 3247 | . . . . . . . . . . 11
⊢
((∀𝑠 ∈
𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) ∧ 𝑠 ∈ 𝑆) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 64 | 63 | ad5ant24 760 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) | 
| 65 |  | simp-4l 782 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (𝜑 ∧ 𝐹:𝑋⟶𝑌)) | 
| 66 |  | simplr 768 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → 𝑠 ∈ 𝑆) | 
| 67 |  | simpr 484 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → 𝑠 ⊆ 𝑣) | 
| 68 |  | ssbr 5186 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 ⊆ 𝑣 → ((𝐹‘𝑥)𝑠(𝐹‘𝑦) → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 69 | 68 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ((𝐹‘𝑥)𝑠(𝐹‘𝑦) → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 70 | 69 | imim2d 57 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ((𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 71 | 70 | ralimdv 3168 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 72 | 71 | ralimdv 3168 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 73 | 72 | reximdv 3169 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 74 | 65, 66, 67, 73 | syl21anc 837 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → (∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 75 | 64, 74 | mpd 15 | . . . . . . . . 9
⊢
((((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) ∧ 𝑠 ∈ 𝑆) ∧ 𝑠 ⊆ 𝑣) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 76 | 10 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → 𝑆 ∈ (fBas‘(𝑌 × 𝑌))) | 
| 77 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | 
| 78 | 77, 13 | eleqtrdi 2850 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆)) | 
| 79 |  | elfg 23880 | . . . . . . . . . . 11
⊢ (𝑆 ∈ (fBas‘(𝑌 × 𝑌)) → (𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆) ↔ (𝑣 ⊆ (𝑌 × 𝑌) ∧ ∃𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣))) | 
| 80 | 79 | simplbda 499 | . . . . . . . . . 10
⊢ ((𝑆 ∈ (fBas‘(𝑌 × 𝑌)) ∧ 𝑣 ∈ ((𝑌 × 𝑌)filGen𝑆)) → ∃𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣) | 
| 81 | 76, 78, 80 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → ∃𝑠 ∈ 𝑆 𝑠 ⊆ 𝑣) | 
| 82 | 62, 75, 81 | r19.29af 3267 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ∧ 𝑣 ∈ 𝑉) → ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 83 | 82 | ralrimiva 3145 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 84 | 83 | ex 412 | . . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑠 ∈ 𝑆 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 85 | 57, 84 | syld 47 | . . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)))) | 
| 86 | 85 | imp 406 | . . . 4
⊢ (((𝜑 ∧ 𝐹:𝑋⟶𝑌) ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) → ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) | 
| 87 | 45, 86 | impbida 800 | . . 3
⊢ ((𝜑 ∧ 𝐹:𝑋⟶𝑌) → (∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦)) ↔ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) | 
| 88 | 87 | pm5.32da 579 | . 2
⊢ (𝜑 → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑣 ∈ 𝑉 ∃𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑢𝑦 → (𝐹‘𝑥)𝑣(𝐹‘𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | 
| 89 | 4, 88 | bitrd 279 | 1
⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |