MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiun Structured version   Visualization version   GIF version

Theorem ssiun 5022
Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ssiun (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3952 . . . . 5 (𝐶𝐵 → (𝑦𝐶𝑦𝐵))
21reximi 3074 . . . 4 (∃𝑥𝐴 𝐶𝐵 → ∃𝑥𝐴 (𝑦𝐶𝑦𝐵))
3 r19.37v 3167 . . . 4 (∃𝑥𝐴 (𝑦𝐶𝑦𝐵) → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
42, 3syl 17 . . 3 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
5 eliun 4971 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
64, 5imbitrrdi 252 . 2 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶𝑦 𝑥𝐴 𝐵))
76ssrdv 3964 1 (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wrex 3060  wss 3926   ciun 4967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-v 3461  df-ss 3943  df-iun 4969
This theorem is referenced by:  iunss2  5025  iunpwss  5083  iunpw  7763  wfrdmclOLD  8329  onfununi  8353  oen0  8596  trcl  9740  rtrclreclem1  15074  rtrclreclem2  15076  constrmon  33724  oacl2g  43301  omcl2  43304  ofoaf  43326  iunlub  48747  iuneqconst2  48749
  Copyright terms: Public domain W3C validator