Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiun Structured version   Visualization version   GIF version

Theorem ssiun 4933
 Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ssiun (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3908 . . . . 5 (𝐶𝐵 → (𝑦𝐶𝑦𝐵))
21reximi 3206 . . . 4 (∃𝑥𝐴 𝐶𝐵 → ∃𝑥𝐴 (𝑦𝐶𝑦𝐵))
3 r19.37v 3298 . . . 4 (∃𝑥𝐴 (𝑦𝐶𝑦𝐵) → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
42, 3syl 17 . . 3 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
5 eliun 4885 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
64, 5syl6ibr 255 . 2 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶𝑦 𝑥𝐴 𝐵))
76ssrdv 3921 1 (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2111  ∃wrex 3107   ⊆ wss 3881  ∪ ciun 4881 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-in 3888  df-ss 3898  df-iun 4883 This theorem is referenced by:  iunss2  4936  iunpwss  4992  iunpw  7473  wfrdmcl  7946  onfununi  7961  oen0  8195  trcl  9154  rtrclreclem1  14408  rtrclreclem2  14410  trpredtr  33179  dftrpred3g  33182
 Copyright terms: Public domain W3C validator