| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun | Structured version Visualization version GIF version | ||
| Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssiun | ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3952 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | reximi 3074 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵)) |
| 3 | r19.37v 3167 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 5 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 6 | 4, 5 | imbitrrdi 252 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 7 | 6 | ssrdv 3964 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: iunss2 5025 iunpwss 5083 iunpw 7763 wfrdmclOLD 8329 onfununi 8353 oen0 8596 trcl 9740 rtrclreclem1 15074 rtrclreclem2 15076 constrmon 33724 oacl2g 43301 omcl2 43304 ofoaf 43326 iunlub 48747 iuneqconst2 48749 |
| Copyright terms: Public domain | W3C validator |