MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiun Structured version   Visualization version   GIF version

Theorem ssiun 5069
Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ssiun (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 4002 . . . . 5 (𝐶𝐵 → (𝑦𝐶𝑦𝐵))
21reximi 3090 . . . 4 (∃𝑥𝐴 𝐶𝐵 → ∃𝑥𝐴 (𝑦𝐶𝑦𝐵))
3 r19.37v 3188 . . . 4 (∃𝑥𝐴 (𝑦𝐶𝑦𝐵) → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
42, 3syl 17 . . 3 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
5 eliun 5019 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
64, 5imbitrrdi 252 . 2 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶𝑦 𝑥𝐴 𝐵))
76ssrdv 4014 1 (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wrex 3076  wss 3976   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-iun 5017
This theorem is referenced by:  iunss2  5072  iunpwss  5130  iunpw  7806  wfrdmclOLD  8373  onfununi  8397  oen0  8642  trcl  9797  rtrclreclem1  15106  rtrclreclem2  15108  constrmon  33734  oacl2g  43292  omcl2  43295  ofoaf  43317
  Copyright terms: Public domain W3C validator