MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.37zv Structured version   Visualization version   GIF version

Theorem r19.37zv 4440
Description: Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.)
Assertion
Ref Expression
r19.37zv (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.37zv
StepHypRef Expression
1 r19.3rzv 4437 . . 3 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
21imbi1d 344 . 2 (𝐴 ≠ ∅ → ((𝜑 → ∃𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)))
3 r19.35 3340 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 292 1 (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wne 3015  wral 3137  wrex 3138  c0 4284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-dif 3932  df-nul 4285
This theorem is referenced by:  ishlat3N  36523  hlsupr2  36556
  Copyright terms: Public domain W3C validator