MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcomf Structured version   Visualization version   GIF version

Theorem ralcomf 3306
Description: Commutation of restricted universal quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1 𝑦𝐴
ralcomf.2 𝑥𝐵
Assertion
Ref Expression
ralcomf (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem ralcomf
StepHypRef Expression
1 ancomst 458 . . . 4 (((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ((𝑦𝐵𝑥𝐴) → 𝜑))
212albii 1921 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑥𝑦((𝑦𝐵𝑥𝐴) → 𝜑))
3 alcom 2211 . . 3 (∀𝑥𝑦((𝑦𝐵𝑥𝐴) → 𝜑) ↔ ∀𝑦𝑥((𝑦𝐵𝑥𝐴) → 𝜑))
42, 3bitri 267 . 2 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑦𝑥((𝑦𝐵𝑥𝐴) → 𝜑))
5 ralcomf.1 . . 3 𝑦𝐴
65r2alf 3147 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
7 ralcomf.2 . . 3 𝑥𝐵
87r2alf 3147 . 2 (∀𝑦𝐵𝑥𝐴 𝜑 ↔ ∀𝑦𝑥((𝑦𝐵𝑥𝐴) → 𝜑))
94, 6, 83bitr4i 295 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1656  wcel 2166  wnfc 2956  wral 3117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clel 2821  df-nfc 2958  df-ral 3122
This theorem is referenced by:  ralcom  3308  ssiinf  4789  ralcom4f  29871
  Copyright terms: Public domain W3C validator