|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rabbidaOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rabbida 3462 as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| rabbidaOLD.n | ⊢ Ⅎ𝑥𝜑 | 
| rabbidaOLD.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| rabbidaOLD | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabbidaOLD.n | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rabbidaOLD.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) | 
| 4 | 1, 3 | ralrimi 3256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒)) | 
| 5 | rabbi 3466 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | |
| 6 | 4, 5 | sylib 218 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3060 {crab 3435 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-ral 3061 df-rab 3436 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |