|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rabdif | Structured version Visualization version GIF version | ||
| Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) | 
| Ref | Expression | 
|---|---|
| rabdif | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indif2 4281 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) | |
| 2 | dfrab2 4320 | . 2 ⊢ {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) | |
| 3 | dfrab2 4320 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 4 | 3 | difeq1i 4122 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) | 
| 5 | 1, 2, 4 | 3eqtr4ri 2776 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 {cab 2714 {crab 3436 ∖ cdif 3948 ∩ cin 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 | 
| This theorem is referenced by: prjspeclsp 42622 dfclnbgr4 47811 clnbupgr 47820 dfnbgr5 47837 dfnbgr6 47843 | 
| Copyright terms: Public domain | W3C validator |