| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabdif | Structured version Visualization version GIF version | ||
| Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| Ref | Expression |
|---|---|
| rabdif | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 4226 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) | |
| 2 | dfrab2 4265 | . 2 ⊢ {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) | |
| 3 | dfrab2 4265 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 4 | 3 | difeq1i 4067 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) |
| 5 | 1, 2, 4 | 3eqtr4ri 2765 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 {crab 3395 ∖ cdif 3894 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 |
| This theorem is referenced by: prjspeclsp 42645 dfclnbgr4 47855 clnbupgr 47864 dfnbgr5 47882 dfnbgr6 47888 |
| Copyright terms: Public domain | W3C validator |