Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabdif | Structured version Visualization version GIF version |
Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
Ref | Expression |
---|---|
rabdif | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 4161 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) | |
2 | dfrab2 4199 | . 2 ⊢ {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) | |
3 | dfrab2 4199 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
4 | 3 | difeq1i 4009 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) |
5 | 1, 2, 4 | 3eqtr4ri 2772 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {cab 2716 {crab 3057 ∖ cdif 3840 ∩ cin 3842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-dif 3846 df-in 3850 |
This theorem is referenced by: prjspeclsp 40028 |
Copyright terms: Public domain | W3C validator |