MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabdif Structured version   Visualization version   GIF version

Theorem rabdif 4287
Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.)
Assertion
Ref Expression
rabdif ({𝑥𝐴𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabdif
StepHypRef Expression
1 indif2 4247 . 2 ({𝑥𝜑} ∩ (𝐴𝐵)) = (({𝑥𝜑} ∩ 𝐴) ∖ 𝐵)
2 dfrab2 4286 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝜑} ∩ (𝐴𝐵))
3 dfrab2 4286 . . 3 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
43difeq1i 4088 . 2 ({𝑥𝐴𝜑} ∖ 𝐵) = (({𝑥𝜑} ∩ 𝐴) ∖ 𝐵)
51, 2, 43eqtr4ri 2764 1 ({𝑥𝐴𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2708  {crab 3408  cdif 3914  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924
This theorem is referenced by:  prjspeclsp  42607  dfclnbgr4  47829  clnbupgr  47838  dfnbgr5  47855  dfnbgr6  47861
  Copyright terms: Public domain W3C validator