Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdif Structured version   Visualization version   GIF version

Theorem rabdif 39775
Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.)
Assertion
Ref Expression
rabdif ({𝑥𝐴𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabdif
StepHypRef Expression
1 indif2 4161 . 2 ({𝑥𝜑} ∩ (𝐴𝐵)) = (({𝑥𝜑} ∩ 𝐴) ∖ 𝐵)
2 dfrab2 4199 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝜑} ∩ (𝐴𝐵))
3 dfrab2 4199 . . 3 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
43difeq1i 4009 . 2 ({𝑥𝐴𝜑} ∖ 𝐵) = (({𝑥𝜑} ∩ 𝐴) ∖ 𝐵)
51, 2, 43eqtr4ri 2772 1 ({𝑥𝐴𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {cab 2716  {crab 3057  cdif 3840  cin 3842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-rab 3062  df-v 3400  df-dif 3846  df-in 3850
This theorem is referenced by:  prjspeclsp  40028
  Copyright terms: Public domain W3C validator