![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabdif | Structured version Visualization version GIF version |
Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
Ref | Expression |
---|---|
rabdif | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 4270 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) | |
2 | dfrab2 4310 | . 2 ⊢ {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ (𝐴 ∖ 𝐵)) | |
3 | dfrab2 4310 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
4 | 3 | difeq1i 4118 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = (({𝑥 ∣ 𝜑} ∩ 𝐴) ∖ 𝐵) |
5 | 1, 2, 4 | 3eqtr4ri 2771 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 {cab 2709 {crab 3432 ∖ cdif 3945 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-in 3955 |
This theorem is referenced by: prjspeclsp 41355 |
Copyright terms: Public domain | W3C validator |