Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version |
Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq1 4050 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-dif 3890 |
This theorem is referenced by: difeq12i 4055 dfin3 4200 indif1 4205 indifcom 4206 difun1 4223 notab 4238 notrab 4245 undifabs 4411 difprsn1 4733 difprsn2 4734 diftpsn3 4735 resdifcom 5910 resdmdfsn 5941 frpoind 6245 wfiOLD 6254 orddif 6359 fresaun 6645 f12dfv 7145 f13dfv 7146 domunsncan 8859 phplem1OLD 9000 elfiun 9189 frind 9508 dju1dif 9928 axcclem 10213 dfn2 12246 mvdco 19053 pmtrdifellem2 19085 islinds2 21020 lindsind2 21026 restcld 22323 ufprim 23060 volun 24709 itgsplitioo 25002 uhgr0vb 27442 uhgr0 27443 uvtxupgrres 27775 cplgr3v 27802 ex-dif 28787 indifundif 30873 imadifxp 30940 aciunf1 31000 pmtrcnelor 31360 lindsunlem 31705 lindsun 31706 braew 32210 carsgclctunlem1 32284 carsggect 32285 coinflippvt 32451 ballotlemfval0 32462 signstfvcl 32552 satf0 33334 onint1 34638 bj-2upln1upl 35214 bj-disj2r 35218 lindsenlbs 35772 poimirlem13 35790 poimirlem14 35791 poimirlem18 35795 poimirlem21 35798 poimirlem30 35807 itg2addnclem 35828 asindmre 35860 rabdif 40184 kelac2 40890 fourierdlem102 43749 fourierdlem114 43761 pwsal 43856 issald 43872 sge0fodjrnlem 43954 hoiprodp1 44126 lincext2 45796 disjdifb 46155 |
Copyright terms: Public domain | W3C validator |