| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4068 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-dif 3901 |
| This theorem is referenced by: difeq12i 4073 dfin3 4226 indif1 4231 indifcom 4232 difun1 4248 notab 4263 rabdif 4270 notrab 4271 undifabs 4427 difprsn1 4753 difprsn2 4754 diftpsn3 4755 resdifcom 5954 resdmdfsn 5987 frpoind 6297 orddif 6412 fresaun 6702 f12dfv 7216 f13dfv 7217 domunsncan 9001 elfiun 9325 frind 9654 dju1dif 10075 axcclem 10359 dfn2 12405 nulchn 18533 s1chn 18534 chnccat 18540 ex-chn1 18551 ex-chn2 18552 mvdco 19365 pmtrdifellem2 19397 islinds2 21759 lindsind2 21765 restcld 23107 ufprim 23844 volun 25493 itgsplitioo 25786 uhgr0vb 29071 uhgr0 29072 uvtxupgrres 29407 cplgr3v 29434 ex-dif 30424 indifundif 32525 imadifxp 32602 aciunf1 32667 indsupp 32877 pmtrcnelor 33101 lindsunlem 33709 lindsun 33710 braew 34327 carsgclctunlem1 34402 carsggect 34403 coinflippvt 34570 ballotlemfval0 34581 signstfvcl 34658 satf0 35488 onint1 36565 bj-2upln1upl 37141 bj-disj2r 37145 lindsenlbs 37728 poimirlem13 37746 poimirlem14 37747 poimirlem18 37751 poimirlem21 37754 poimirlem30 37763 itg2addnclem 37784 asindmre 37816 disjresundif 38354 dmxrnuncnvepres 38489 dmxrncnvepres2 38530 sucdifsn 38571 ressucdifsn 38573 kelac2 43222 fourierdlem102 46368 fourierdlem114 46380 pwsal 46475 issald 46493 sge0fodjrnlem 46576 hoiprodp1 46748 lincext2 48617 disjdifb 48971 |
| Copyright terms: Public domain | W3C validator |