Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version |
Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq1 4046 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-dif 3886 |
This theorem is referenced by: difeq12i 4051 dfin3 4197 indif1 4202 indifcom 4203 difun1 4220 notab 4235 notrab 4242 undifabs 4408 difprsn1 4730 difprsn2 4731 diftpsn3 4732 resdifcom 5899 resdmdfsn 5930 frpoind 6230 wfiOLD 6239 orddif 6344 fresaun 6629 f12dfv 7126 f13dfv 7127 domunsncan 8812 phplem1 8892 elfiun 9119 frind 9439 dju1dif 9859 axcclem 10144 dfn2 12176 mvdco 18968 pmtrdifellem2 19000 islinds2 20930 lindsind2 20936 restcld 22231 ufprim 22968 volun 24614 itgsplitioo 24907 uhgr0vb 27345 uhgr0 27346 uvtxupgrres 27678 cplgr3v 27705 ex-dif 28688 indifundif 30774 imadifxp 30841 aciunf1 30902 pmtrcnelor 31262 lindsunlem 31607 lindsun 31608 braew 32110 carsgclctunlem1 32184 carsggect 32185 coinflippvt 32351 ballotlemfval0 32362 signstfvcl 32452 satf0 33234 onint1 34565 bj-2upln1upl 35141 bj-disj2r 35145 lindsenlbs 35699 poimirlem13 35717 poimirlem14 35718 poimirlem18 35722 poimirlem21 35725 poimirlem30 35734 itg2addnclem 35755 asindmre 35787 rabdif 40112 kelac2 40806 fourierdlem102 43639 fourierdlem114 43651 pwsal 43746 issald 43762 sge0fodjrnlem 43844 hoiprodp1 44016 lincext2 45684 disjdifb 46043 |
Copyright terms: Public domain | W3C validator |