| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4064 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-dif 3900 |
| This theorem is referenced by: difeq12i 4069 dfin3 4222 indif1 4227 indifcom 4228 difun1 4244 notab 4259 rabdif 4266 notrab 4267 undifabs 4423 difprsn1 4747 difprsn2 4748 diftpsn3 4749 resdifcom 5942 resdmdfsn 5975 frpoind 6284 orddif 6399 fresaun 6689 f12dfv 7202 f13dfv 7203 domunsncan 8985 elfiun 9309 frind 9638 dju1dif 10059 axcclem 10343 dfn2 12389 nulchn 18520 s1chn 18521 chnccat 18527 ex-chn1 18538 ex-chn2 18539 mvdco 19352 pmtrdifellem2 19384 islinds2 21745 lindsind2 21751 restcld 23082 ufprim 23819 volun 25468 itgsplitioo 25761 uhgr0vb 29045 uhgr0 29046 uvtxupgrres 29381 cplgr3v 29408 ex-dif 30395 indifundif 32496 imadifxp 32573 aciunf1 32637 indsupp 32840 pmtrcnelor 33052 lindsunlem 33629 lindsun 33630 braew 34247 carsgclctunlem1 34322 carsggect 34323 coinflippvt 34490 ballotlemfval0 34501 signstfvcl 34578 satf0 35408 onint1 36483 bj-2upln1upl 37058 bj-disj2r 37062 lindsenlbs 37655 poimirlem13 37673 poimirlem14 37674 poimirlem18 37678 poimirlem21 37681 poimirlem30 37690 itg2addnclem 37711 asindmre 37743 sucdifsn 38273 disjresundif 38277 ressucdifsn 38279 kelac2 43098 fourierdlem102 46246 fourierdlem114 46258 pwsal 46353 issald 46371 sge0fodjrnlem 46454 hoiprodp1 46626 lincext2 48487 disjdifb 48841 |
| Copyright terms: Public domain | W3C validator |