| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4085 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-dif 3920 |
| This theorem is referenced by: difeq12i 4090 dfin3 4243 indif1 4248 indifcom 4249 difun1 4265 notab 4280 rabdif 4287 notrab 4288 undifabs 4444 difprsn1 4767 difprsn2 4768 diftpsn3 4769 resdifcom 5972 resdmdfsn 6005 frpoind 6318 orddif 6433 fresaun 6734 f12dfv 7251 f13dfv 7252 domunsncan 9046 elfiun 9388 frind 9710 dju1dif 10133 axcclem 10417 dfn2 12462 mvdco 19382 pmtrdifellem2 19414 islinds2 21729 lindsind2 21735 restcld 23066 ufprim 23803 volun 25453 itgsplitioo 25746 uhgr0vb 29006 uhgr0 29007 uvtxupgrres 29342 cplgr3v 29369 ex-dif 30359 indifundif 32460 imadifxp 32537 aciunf1 32594 indsupp 32797 s1chn 32943 pmtrcnelor 33055 lindsunlem 33627 lindsun 33628 braew 34239 carsgclctunlem1 34315 carsggect 34316 coinflippvt 34483 ballotlemfval0 34494 signstfvcl 34571 satf0 35366 onint1 36444 bj-2upln1upl 37019 bj-disj2r 37023 lindsenlbs 37616 poimirlem13 37634 poimirlem14 37635 poimirlem18 37639 poimirlem21 37642 poimirlem30 37651 itg2addnclem 37672 asindmre 37704 sucdifsn 38234 disjresundif 38238 ressucdifsn 38240 kelac2 43061 fourierdlem102 46213 fourierdlem114 46225 pwsal 46320 issald 46338 sge0fodjrnlem 46421 hoiprodp1 46593 lincext2 48448 disjdifb 48802 |
| Copyright terms: Public domain | W3C validator |