| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4082 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-dif 3917 |
| This theorem is referenced by: difeq12i 4087 dfin3 4240 indif1 4245 indifcom 4246 difun1 4262 notab 4277 rabdif 4284 notrab 4285 undifabs 4441 difprsn1 4764 difprsn2 4765 diftpsn3 4766 resdifcom 5969 resdmdfsn 6002 frpoind 6315 orddif 6430 fresaun 6731 f12dfv 7248 f13dfv 7249 domunsncan 9041 elfiun 9381 frind 9703 dju1dif 10126 axcclem 10410 dfn2 12455 mvdco 19375 pmtrdifellem2 19407 islinds2 21722 lindsind2 21728 restcld 23059 ufprim 23796 volun 25446 itgsplitioo 25739 uhgr0vb 28999 uhgr0 29000 uvtxupgrres 29335 cplgr3v 29362 ex-dif 30352 indifundif 32453 imadifxp 32530 aciunf1 32587 indsupp 32790 s1chn 32936 pmtrcnelor 33048 lindsunlem 33620 lindsun 33621 braew 34232 carsgclctunlem1 34308 carsggect 34309 coinflippvt 34476 ballotlemfval0 34487 signstfvcl 34564 satf0 35359 onint1 36437 bj-2upln1upl 37012 bj-disj2r 37016 lindsenlbs 37609 poimirlem13 37627 poimirlem14 37628 poimirlem18 37632 poimirlem21 37635 poimirlem30 37644 itg2addnclem 37665 asindmre 37697 sucdifsn 38227 disjresundif 38231 ressucdifsn 38233 kelac2 43054 fourierdlem102 46206 fourierdlem114 46218 pwsal 46313 issald 46331 sge0fodjrnlem 46414 hoiprodp1 46586 lincext2 48444 disjdifb 48798 |
| Copyright terms: Public domain | W3C validator |