![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version |
Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq1 4142 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-dif 3979 |
This theorem is referenced by: difeq12i 4147 dfin3 4296 indif1 4301 indifcom 4302 difun1 4318 notab 4333 rabdif 4340 notrab 4341 undifabs 4501 difprsn1 4825 difprsn2 4826 diftpsn3 4827 resdifcom 6028 resdmdfsn 6060 frpoind 6374 wfiOLD 6383 orddif 6491 fresaun 6792 f12dfv 7309 f13dfv 7310 domunsncan 9138 phplem1OLD 9280 elfiun 9499 frind 9819 dju1dif 10242 axcclem 10526 dfn2 12566 mvdco 19487 pmtrdifellem2 19519 islinds2 21856 lindsind2 21862 restcld 23201 ufprim 23938 volun 25599 itgsplitioo 25893 uhgr0vb 29107 uhgr0 29108 uvtxupgrres 29443 cplgr3v 29470 ex-dif 30455 indifundif 32554 imadifxp 32623 aciunf1 32681 pmtrcnelor 33084 lindsunlem 33637 lindsun 33638 braew 34206 carsgclctunlem1 34282 carsggect 34283 coinflippvt 34449 ballotlemfval0 34460 signstfvcl 34550 satf0 35340 onint1 36415 bj-2upln1upl 36990 bj-disj2r 36994 lindsenlbs 37575 poimirlem13 37593 poimirlem14 37594 poimirlem18 37598 poimirlem21 37601 poimirlem30 37610 itg2addnclem 37631 asindmre 37663 sucdifsn 38194 disjresundif 38198 ressucdifsn 38200 kelac2 43022 fourierdlem102 46129 fourierdlem114 46141 pwsal 46236 issald 46254 sge0fodjrnlem 46337 hoiprodp1 46509 lincext2 48184 disjdifb 48541 |
Copyright terms: Public domain | W3C validator |