| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4078 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: difeq12i 4083 dfin3 4236 indif1 4241 indifcom 4242 difun1 4258 notab 4273 rabdif 4280 notrab 4281 undifabs 4437 difprsn1 4760 difprsn2 4761 diftpsn3 4762 resdifcom 5958 resdmdfsn 5991 frpoind 6303 orddif 6418 fresaun 6713 f12dfv 7230 f13dfv 7231 domunsncan 9018 elfiun 9357 frind 9679 dju1dif 10102 axcclem 10386 dfn2 12431 mvdco 19351 pmtrdifellem2 19383 islinds2 21698 lindsind2 21704 restcld 23035 ufprim 23772 volun 25422 itgsplitioo 25715 uhgr0vb 28975 uhgr0 28976 uvtxupgrres 29311 cplgr3v 29338 ex-dif 30325 indifundif 32426 imadifxp 32503 aciunf1 32560 indsupp 32763 s1chn 32909 pmtrcnelor 33021 lindsunlem 33593 lindsun 33594 braew 34205 carsgclctunlem1 34281 carsggect 34282 coinflippvt 34449 ballotlemfval0 34460 signstfvcl 34537 satf0 35332 onint1 36410 bj-2upln1upl 36985 bj-disj2r 36989 lindsenlbs 37582 poimirlem13 37600 poimirlem14 37601 poimirlem18 37605 poimirlem21 37608 poimirlem30 37617 itg2addnclem 37638 asindmre 37670 sucdifsn 38200 disjresundif 38204 ressucdifsn 38206 kelac2 43027 fourierdlem102 46179 fourierdlem114 46191 pwsal 46286 issald 46304 sge0fodjrnlem 46387 hoiprodp1 46559 lincext2 48417 disjdifb 48771 |
| Copyright terms: Public domain | W3C validator |