| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4099 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∖ cdif 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-dif 3934 |
| This theorem is referenced by: difeq12i 4104 dfin3 4257 indif1 4262 indifcom 4263 difun1 4279 notab 4294 rabdif 4301 notrab 4302 undifabs 4458 difprsn1 4780 difprsn2 4781 diftpsn3 4782 resdifcom 5996 resdmdfsn 6029 frpoind 6342 wfiOLD 6351 orddif 6460 fresaun 6759 f12dfv 7275 f13dfv 7276 domunsncan 9094 phplem1OLD 9236 elfiun 9452 frind 9772 dju1dif 10195 axcclem 10479 dfn2 12522 mvdco 19431 pmtrdifellem2 19463 islinds2 21787 lindsind2 21793 restcld 23126 ufprim 23863 volun 25516 itgsplitioo 25809 uhgr0vb 29017 uhgr0 29018 uvtxupgrres 29353 cplgr3v 29380 ex-dif 30370 indifundif 32471 imadifxp 32549 aciunf1 32608 indsupp 32792 s1chn 32939 pmtrcnelor 33050 lindsunlem 33610 lindsun 33611 braew 34202 carsgclctunlem1 34278 carsggect 34279 coinflippvt 34446 ballotlemfval0 34457 signstfvcl 34547 satf0 35336 onint1 36409 bj-2upln1upl 36984 bj-disj2r 36988 lindsenlbs 37581 poimirlem13 37599 poimirlem14 37600 poimirlem18 37604 poimirlem21 37607 poimirlem30 37616 itg2addnclem 37637 asindmre 37669 sucdifsn 38199 disjresundif 38203 ressucdifsn 38205 kelac2 43040 fourierdlem102 46180 fourierdlem114 46192 pwsal 46287 issald 46305 sge0fodjrnlem 46388 hoiprodp1 46560 lincext2 48330 disjdifb 48687 |
| Copyright terms: Public domain | W3C validator |