| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq1 4094 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-dif 3929 |
| This theorem is referenced by: difeq12i 4099 dfin3 4252 indif1 4257 indifcom 4258 difun1 4274 notab 4289 rabdif 4296 notrab 4297 undifabs 4453 difprsn1 4776 difprsn2 4777 diftpsn3 4778 resdifcom 5985 resdmdfsn 6018 frpoind 6331 wfiOLD 6340 orddif 6449 fresaun 6748 f12dfv 7265 f13dfv 7266 domunsncan 9084 phplem1OLD 9226 elfiun 9440 frind 9762 dju1dif 10185 axcclem 10469 dfn2 12512 mvdco 19424 pmtrdifellem2 19456 islinds2 21771 lindsind2 21777 restcld 23108 ufprim 23845 volun 25496 itgsplitioo 25789 uhgr0vb 28997 uhgr0 28998 uvtxupgrres 29333 cplgr3v 29360 ex-dif 30350 indifundif 32451 imadifxp 32528 aciunf1 32587 indsupp 32790 s1chn 32936 pmtrcnelor 33048 lindsunlem 33610 lindsun 33611 braew 34219 carsgclctunlem1 34295 carsggect 34296 coinflippvt 34463 ballotlemfval0 34474 signstfvcl 34551 satf0 35340 onint1 36413 bj-2upln1upl 36988 bj-disj2r 36992 lindsenlbs 37585 poimirlem13 37603 poimirlem14 37604 poimirlem18 37608 poimirlem21 37611 poimirlem30 37620 itg2addnclem 37641 asindmre 37673 sucdifsn 38203 disjresundif 38207 ressucdifsn 38209 kelac2 43036 fourierdlem102 46185 fourierdlem114 46197 pwsal 46292 issald 46310 sge0fodjrnlem 46393 hoiprodp1 46565 lincext2 48379 disjdifb 48736 |
| Copyright terms: Public domain | W3C validator |