MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Structured version   Visualization version   GIF version

Theorem indif2 4266
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif2
StepHypRef Expression
1 inass 4215 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4264 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4264 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
43ineq2i 4205 . 2 (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵𝐶))
51, 2, 43eqtr3ri 2765 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3470  cdif 3942  cin 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-in 3952
This theorem is referenced by:  indif1  4267  indifcom  4268  frpoind  6342  wfiOLD  6351  marypha1lem  9450  frind  9767  difopn  22931  restcld  23069  difmbl  25465  voliunlem1  25472  difuncomp  32337  imadifxp  32384  difelcarsg  33924  carsgclctunlem1  33931  topbnd  35802  bj-disj2r  36501  nlpineqsn  36881  mblfinlem3  37126  mblfinlem4  37127  rabdif  41697  gneispace  43558  saldifcl2  45710  caragenuncllem  45894  carageniuncllem1  45903  iscnrm3rlem1  47953
  Copyright terms: Public domain W3C validator