![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indif2 | Structured version Visualization version GIF version |
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
indif2 | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4215 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4264 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
3 | invdif 4264 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
4 | 3 | ineq2i 4205 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵 ∖ 𝐶)) |
5 | 1, 2, 4 | 3eqtr3ri 2765 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 Vcvv 3470 ∖ cdif 3942 ∩ cin 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-in 3952 |
This theorem is referenced by: indif1 4267 indifcom 4268 frpoind 6342 wfiOLD 6351 marypha1lem 9450 frind 9767 difopn 22931 restcld 23069 difmbl 25465 voliunlem1 25472 difuncomp 32337 imadifxp 32384 difelcarsg 33924 carsgclctunlem1 33931 topbnd 35802 bj-disj2r 36501 nlpineqsn 36881 mblfinlem3 37126 mblfinlem4 37127 rabdif 41697 gneispace 43558 saldifcl2 45710 caragenuncllem 45894 carageniuncllem1 45903 iscnrm3rlem1 47953 |
Copyright terms: Public domain | W3C validator |