| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indif2 | Structured version Visualization version GIF version | ||
| Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| indif2 | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4187 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4238 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4238 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 4 | 3 | ineq2i 4176 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵 ∖ 𝐶)) |
| 5 | 1, 2, 4 | 3eqtr3ri 2761 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∖ cdif 3908 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-in 3918 |
| This theorem is referenced by: indif1 4241 indifcom 4242 rabdif 4280 frpoind 6303 marypha1lem 9360 frind 9679 difopn 22954 restcld 23092 difmbl 25477 voliunlem1 25484 difuncomp 32532 imadifxp 32580 difelcarsg 34294 carsgclctunlem1 34301 topbnd 36305 bj-disj2r 37009 nlpineqsn 37389 mblfinlem3 37646 mblfinlem4 37647 gneispace 44116 saldifcl2 46319 caragenuncllem 46503 carageniuncllem1 46512 iscnrm3rlem1 48921 |
| Copyright terms: Public domain | W3C validator |