MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Structured version   Visualization version   GIF version

Theorem indif2 4261
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif2
StepHypRef Expression
1 inass 4208 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4259 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4259 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
43ineq2i 4197 . 2 (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵𝐶))
51, 2, 43eqtr3ri 2766 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3463  cdif 3928  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-in 3938
This theorem is referenced by:  indif1  4262  indifcom  4263  rabdif  4301  frpoind  6342  wfiOLD  6351  marypha1lem  9455  frind  9772  difopn  22988  restcld  23126  difmbl  25514  voliunlem1  25521  difuncomp  32501  imadifxp  32549  difelcarsg  34271  carsgclctunlem1  34278  topbnd  36284  bj-disj2r  36988  nlpineqsn  37368  mblfinlem3  37625  mblfinlem4  37626  gneispace  44109  saldifcl2  46300  caragenuncllem  46484  carageniuncllem1  46493  iscnrm3rlem1  48797
  Copyright terms: Public domain W3C validator