![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indif2 | Structured version Visualization version GIF version |
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
indif2 | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4249 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4298 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
3 | invdif 4298 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
4 | 3 | ineq2i 4238 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵 ∖ 𝐶)) |
5 | 1, 2, 4 | 3eqtr3ri 2777 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 |
This theorem is referenced by: indif1 4301 indifcom 4302 rabdif 4340 frpoind 6374 wfiOLD 6383 marypha1lem 9502 frind 9819 difopn 23063 restcld 23201 difmbl 25597 voliunlem1 25604 difuncomp 32576 imadifxp 32623 difelcarsg 34275 carsgclctunlem1 34282 topbnd 36290 bj-disj2r 36994 nlpineqsn 37374 mblfinlem3 37619 mblfinlem4 37620 gneispace 44096 saldifcl2 46249 caragenuncllem 46433 carageniuncllem1 46442 iscnrm3rlem1 48620 |
Copyright terms: Public domain | W3C validator |