Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indif2 | Structured version Visualization version GIF version |
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
indif2 | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4150 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4199 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
3 | invdif 4199 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
4 | 3 | ineq2i 4140 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵 ∖ 𝐶)) |
5 | 1, 2, 4 | 3eqtr3ri 2775 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 |
This theorem is referenced by: indif1 4202 indifcom 4203 frpoind 6230 wfiOLD 6239 marypha1lem 9122 frind 9439 difopn 22093 restcld 22231 difmbl 24612 voliunlem1 24619 difuncomp 30794 imadifxp 30841 difelcarsg 32177 carsgclctunlem1 32184 topbnd 34440 bj-disj2r 35145 nlpineqsn 35506 mblfinlem3 35743 mblfinlem4 35744 rabdif 40112 gneispace 41633 saldifcl2 43757 caragenuncllem 43940 carageniuncllem1 43949 iscnrm3rlem1 46122 |
Copyright terms: Public domain | W3C validator |