| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indif2 | Structured version Visualization version GIF version | ||
| Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| Ref | Expression |
|---|---|
| indif2 | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4175 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
| 2 | invdif 4226 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
| 3 | invdif 4226 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
| 4 | 3 | ineq2i 4164 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵 ∖ 𝐶)) |
| 5 | 1, 2, 4 | 3eqtr3ri 2763 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 |
| This theorem is referenced by: indif1 4229 indifcom 4230 rabdif 4268 frpoind 6289 marypha1lem 9317 frind 9643 difopn 22949 restcld 23087 difmbl 25471 voliunlem1 25478 difuncomp 32533 imadifxp 32581 psrbasfsupp 33572 difelcarsg 34323 carsgclctunlem1 34330 topbnd 36368 bj-disj2r 37072 nlpineqsn 37452 mblfinlem3 37698 mblfinlem4 37699 dmxrncnvepres2 38456 gneispace 44226 saldifcl2 46425 caragenuncllem 46609 carageniuncllem1 46618 iscnrm3rlem1 49039 |
| Copyright terms: Public domain | W3C validator |