MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Structured version   Visualization version   GIF version

Theorem indif2 4204
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif2
StepHypRef Expression
1 inass 4153 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4202 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4202 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
43ineq2i 4143 . 2 (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵𝐶))
51, 2, 43eqtr3ri 2775 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cdif 3884  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894
This theorem is referenced by:  indif1  4205  indifcom  4206  frpoind  6245  wfiOLD  6254  marypha1lem  9192  frind  9508  difopn  22185  restcld  22323  difmbl  24707  voliunlem1  24714  difuncomp  30893  imadifxp  30940  difelcarsg  32277  carsgclctunlem1  32284  topbnd  34513  bj-disj2r  35218  nlpineqsn  35579  mblfinlem3  35816  mblfinlem4  35817  rabdif  40184  gneispace  41744  saldifcl2  43867  caragenuncllem  44050  carageniuncllem1  44059  iscnrm3rlem1  46234
  Copyright terms: Public domain W3C validator