MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Structured version   Visualization version   GIF version

Theorem indif2 4201
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif2
StepHypRef Expression
1 inass 4150 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4199 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4199 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
43ineq2i 4140 . 2 (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵𝐶))
51, 2, 43eqtr3ri 2775 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3422  cdif 3880  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890
This theorem is referenced by:  indif1  4202  indifcom  4203  frpoind  6230  wfiOLD  6239  marypha1lem  9122  frind  9439  difopn  22093  restcld  22231  difmbl  24612  voliunlem1  24619  difuncomp  30794  imadifxp  30841  difelcarsg  32177  carsgclctunlem1  32184  topbnd  34440  bj-disj2r  35145  nlpineqsn  35506  mblfinlem3  35743  mblfinlem4  35744  rabdif  40112  gneispace  41633  saldifcl2  43757  caragenuncllem  43940  carageniuncllem1  43949  iscnrm3rlem1  46122
  Copyright terms: Public domain W3C validator