MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Structured version   Visualization version   GIF version

Theorem indif2 4300
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif2
StepHypRef Expression
1 inass 4249 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶)))
2 invdif 4298 . 2 ((𝐴𝐵) ∩ (V ∖ 𝐶)) = ((𝐴𝐵) ∖ 𝐶)
3 invdif 4298 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = (𝐵𝐶)
43ineq2i 4238 . 2 (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵𝐶))
51, 2, 43eqtr3ri 2777 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cdif 3973  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983
This theorem is referenced by:  indif1  4301  indifcom  4302  rabdif  4340  frpoind  6374  wfiOLD  6383  marypha1lem  9502  frind  9819  difopn  23063  restcld  23201  difmbl  25597  voliunlem1  25604  difuncomp  32576  imadifxp  32623  difelcarsg  34275  carsgclctunlem1  34282  topbnd  36290  bj-disj2r  36994  nlpineqsn  37374  mblfinlem3  37619  mblfinlem4  37620  gneispace  44096  saldifcl2  46249  caragenuncllem  46433  carageniuncllem1  46442  iscnrm3rlem1  48620
  Copyright terms: Public domain W3C validator