Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indif2 | Structured version Visualization version GIF version |
Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
Ref | Expression |
---|---|
indif2 | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4125 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) | |
2 | invdif 4174 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (V ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
3 | invdif 4174 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
4 | 3 | ineq2i 4115 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (V ∖ 𝐶))) = (𝐴 ∩ (𝐵 ∖ 𝐶)) |
5 | 1, 2, 4 | 3eqtr3ri 2791 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3410 ∖ cdif 3856 ∩ cin 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-rab 3080 df-v 3412 df-dif 3862 df-in 3866 |
This theorem is referenced by: indif1 4177 indifcom 4178 wfi 6160 marypha1lem 8923 difopn 21727 restcld 21865 difmbl 24236 voliunlem1 24243 difuncomp 30408 imadifxp 30455 difelcarsg 31789 carsgclctunlem1 31796 frpoind 33320 frind 33328 topbnd 34055 bj-disj2r 34738 nlpineqsn 35098 mblfinlem3 35369 mblfinlem4 35370 rabdif 39691 gneispace 41203 saldifcl2 43327 caragenuncllem 43510 carageniuncllem1 43519 |
Copyright terms: Public domain | W3C validator |